pressure output
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 46 (5) ◽  
pp. 1149
Author(s):  
Yujie Chen ◽  
Qi Li ◽  
Haobo Zhu ◽  
Yan Wang ◽  
Xinyue Zhang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1014
Author(s):  
Tianning Liu ◽  
Ajay Dangi ◽  
Jeong Nyeon Kim ◽  
Sri-Rajasekhar Kothapalli ◽  
Kyusun Choi ◽  
...  

We report flexible thin-film lead zirconate titanate (PZT)-based ultrasonic transducers on polyimide substrates. The transducers are bar resonators designed to operate in the width extension mode. The active elements are 1 µm thick PZT films that were crystallized on Si substrates at 700 °C and transferred to 5 µm thick solution-cast polyimide via dissolution of an underlying release layer. Underwater pitch–catch testing between two neighboring 100 µm × 1000 µm elements showed a 0.2 mV signal at a 1.5 cm distance for a driving voltage of 5 V peak at 9.5 MHz. With the same excitation, a 33 kPa sound pressure output at a 6 mm distance and a 32% bandwidth at −6 dB were measured by hydrophone.


2021 ◽  
Vol 22 ◽  
pp. 36
Author(s):  
Huawei Jin ◽  
Huanyu Huo ◽  
Chuanli Wang ◽  
Shun Wang ◽  
Huwei Xu

To meet the requirement of the braking response of the coal mine hoist, a new electromechanical braking technology for mine hoists is proposed, the principle of electromechanical braking of mine hoists is demonstrated, and the detailed parameters and braking performance of electromechanical brakes are given. Index, an electromechanical brake test platform with large load and high response is developed. Experiments show that the maximum positive pressure of the designed electromechanical brake reaches 33 KN, which meets the requirement of positive pressure of mine hoist. The braking error is less than 10 %, and the braking gap elimination time is less than 0.1 s. There is a linear relationship between motor current input and brake positive pressure output, with a slope of 4.17 and an intercept of 0.62. The screw displacement output and the brake pressure output have a cubic relationship, and the zero error is small. Through research, a new idea is provided for the development of electromechanical brakes for coal mine hoist.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xianglian Lv ◽  
Jie Guan ◽  
Shengkun Wang ◽  
Haiyang Zhang ◽  
Shijie Xue ◽  
...  

This study aims at addressing a problem on icing detection for Unmanned Aerial Vehicle (UAV for short) because traditional icing detection methods are costly and bulky. Toward this end, a pitot-based icing detection method is proposed, and the effect of different types of icing blocking on pressure is firstly reported. An icing detection system based on the pitot tube is designed and fabricated. Icing wind tunnel results indicate that if the pitot tube is blocked by glaze ice, then the total pressure of the pitot tube decreases gradually and remains unchanged and less than static pressure. However, if the pitot tube is blocked by rime ice, then the total pressure drops to the same level as the static pressure. If the pitot tube is blocked by non-ice organic materials, then the total pressure suddenly drops to the same level as the static pressure and remains unchanged. Furthermore, if the pitot tube contacts the water droplets but does not freeze, the total pressure output value fluctuates slightly. The effect of icing on pressure is caused by differences in ice microstructure, temperature, and flow velocity. At the same time, the proposed method offers a facile and low-cost approach for UAV icing detection.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 623 ◽  
Author(s):  
Eunjung Shin ◽  
Hong Goo Yeo ◽  
Ara Yeon ◽  
Changzhu Jin ◽  
Wonki Park ◽  
...  

This study presents the fabrication and characterization of a piezoelectric micromachined ultrasonic transducer (pMUT; radius: 40 µm) using a patterned aluminum nitride (AlN) thin film as the active piezoelectric material. A 20 × 20 array of pMUTs using a 1 µm thick AlN thin film was designed and fabricated on a 2 × 2 mm2 footprint for a high fill factor. Based on the electrical impedance and phase of the pMUT array, the electromechanical coefficient was ~1.7% at the average resonant frequency of 2.82 MHz in air. Dynamic displacement of the pMUT surface was characterized by scanning laser Doppler vibrometry. The pressure output while immersed in water was 19.79 kPa when calculated based on the peak displacement at the resonant frequency. The proposed AlN pMUT array has potential applications in biomedical sensing for healthcare, medical imaging, and biometrics.


Author(s):  
G. Shoukat ◽  
Kamran Siddique ◽  
M. Sajid

Abstract Turbomachinery plays a key role in process and manufacturing industries. The interplay between power, flow rates and pressure output remain an interesting research area. To support specific processes in the industry, each pump or compressor must be fine-tuned for peak performance. As trend shifts from large organizations to entrepreneurial startups, spending significant costs on licensing of commercially available CFD softwares becomes unfeasible. This paper investigates the use of OpenFOAM – open source CFD package towards the analysis of gear pumps. The solution employs dynamic meshing and snappyHexMesh library in a single study. To validate the numerical model developed under OpenFoam’s environment, experimental studies were carried out. The pressure output of the pump was measured at four different RPMs — 200, 250, 300 and 400. An excellent agreement between experimental and numerical studies was seen at relatively higher RPMs. The numerical studies further explored the pulsating flow, recorded the variation between a constant maximum and minimum pressure value for each RPM. The variation in pressure was observed to increase at higher RPMs. The agreement between experimental and numerical findings established the utility of OpenFoam in investigating pump action.


2019 ◽  
Vol 177 (2) ◽  
pp. 95-102
Author(s):  
Andrzej SUCHETA

Moisturizing the intake air by spraying water in the liquid phase significantly lowers the intake air temperature, mainly due to the high value of latent heat of evaporation. The paper presents a methodology for calculating the parameters of the air-fuel mixture after water injection and during subsequent processes of the Otto cycle: compression, combustion and expansion of exhaust gases. For octane as a fuel, exemplary calculations have been carried out to investigate the effect of water injection on the composition of combustion products and selected parameters of the theoretical Otto cycle (temperature, pressure, output power and thermal efficiency).


Sign in / Sign up

Export Citation Format

Share Document