scholarly journals Transportation of Al2O3-SiO2-TiO2 modified nanofluid over an exponentially stretching surface with inclined magnetohydrodynamic

2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 279-285
Author(s):  
Prvaeen Dadheech ◽  
Priyanka Agrawal ◽  
Anil Sharma ◽  
Kottakkaran Nisar ◽  
Sunil Purohit

In the present study Al2O3-SiO2-TiO2/C2H6O2 modified nanofluid flow over a stretching surface is considered with imposed inclined magnetic field. Three different suspended nanoparticles in a base fluid are considered in this next generation of hybrid nanofluid called as modified nanofluid. Ethanol glycol is taken as a base fluid with suspension of three nanoparticles of Al2O3, SiO2, and TiO2. The mathematical model of the flow is encountered by Runga-Kutta fourth order method using appropriate similarity transformations. As a key result it is observed that the capacity of heat transportation of modified nanofluid is higher as compared with nanofluids and hybrid nanofluids. Numerical solutions with graphical representation are presented. With increased inclined angle, parameter of magnetic field, and volume friction parameter a decrement in velocity field has been noticed for modified nanofluid.

Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 138
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.


Author(s):  
Nabil T. Eldabe ◽  
Mohamed Y. Abou zeid ◽  
Sami M. El Shabouri ◽  
Tarek N. Salama ◽  
Aya M. Ismael

Inclined uniform magnetic field and mixed convention effects on micropolar non-Newtonian nanofluid Al2O3 flow with heat transfer are studied. The heat source, both viscous and ohmic dissipation and temperature micropolarity properties are considered. We transformed our system of non-linear partial differential equations into ordinary equations by using suitable similarity transformations. These equations are solved by making use of Rung–Kutta–Merson method in a shooting and matching technique. The numerical solutions of the tangential velocity, microtation velocity, temperature and nanoparticle concentration are obtained as functions of the physical parameters of the problem. Moreover, we discussed the effects of these parameters on the numerical solutions and depicted graphically. It is obvious that these parameters control the fluid flow. It is noticed that the tangential velocity magnifies with an increase in the value of Darcy number. Meanwhile, the value of the tangential velocity reduces with the elevation in the value of the magnetic field parameter. On the other hand, the elevation in the value of Brownian motion parameter leads to a reduction in the value of fluid temperature. Furthermore, increasing in the value of heat source parameter makes an enhancement in the value of nanoparticles concentration. The current study has many accomplishments in several scientific areas like medical industry, medicine, and others. Therefore, it represents the depiction of gas or liquid motion over a surface. When particles are moving from areas of high concentration to areas of low concentration.


2020 ◽  
Vol 50 (4) ◽  
pp. 283-289
Author(s):  
S. Jena ◽  
S. R. Mishra ◽  
P.K. Pattnaik ◽  
Ram Prakash Sharma

This paper deals with nanofluid flow between parallel plates and heat transfer through porous media with heat source /sink. The governing equations are transformed into self-similar ordinary differential equations by adopting similarity transformations and then the converted equations are solved numerically by Runge-Kutta fourth order method. Special emphasis has been given to the parameters of physical interest which include Prandtl number, magnetic parameter, porous matrix, chemical reaction parameter and heat source parameter. The results obtained for velocity, temperature and concentration are shown in graphs. The comparison of the special case of this present results with the existing numerical solutions in the literature shows excellent agreement.


2021 ◽  
Author(s):  
Ali Rehman ◽  
Waris khan

Abstract The objective of this researcher paper is to study the analytical solution of unsteady hybrid nanofluid in the presences of magnetic field over a stretching surface. By using similarity transformation the major partial differential equation is converted to a set of nonlinear ordinary differential equation .the analytical method (OHAM) is used to find the approximate analytical solution of the nonlinear ordinary differential equation The BVPh 2.0 package function of MATHEMATICA is used to obtained the numerical results the result of important parameter such as, magnetic parameter, Prandtl number, Eckert number and surface convection parameter for both velocity and temperature profile are plotted and discuss. The BVPh 2.0 package is used to obtained the converges of the problem up to 25 iterations. The skin friction coefficient and Nusselt is explained in table form.


2020 ◽  
Vol 9 (3) ◽  
pp. 161-167
Author(s):  
P. K. Dadheech ◽  
P. Agrawal ◽  
F. Mebarek-Oudina ◽  
N. H. Abu-Hamdeh ◽  
A. Sharma

This article explores the comparative analysis of MoS2/C2H6O2 nanofluid and SiO2-MoS2/C2H6O2 hybrid nanofluid natural convective boundary layer flow through a stretching area. Uniform inclined magnetic field is applied together with viscous dissipation. The governing model of the flow is solved by Runga-Kutta fourth orde method using appropriate similarity transformations. Temperature and velocity field are presented for various flow pertinent parameters. It is conclude that if we give an increment in the convection parameter the velocity profile increases and opposite effect is noticed for the temperature profile for both fluids. Also with increased volume fraction parameter Φ2, we get increased velocity and temperature profiles for both nanofluids.


2017 ◽  
Vol 7 (1) ◽  
pp. 69-76 ◽  
Author(s):  
K. Pushpalatha ◽  
J.V. Ramana Reddy ◽  
V. Sugunamma ◽  
N. Sandeep

AbstractThe problem of an unsteady MHD Casson fluid flow towards a stretching surface with cross diffusion effects is considered. The governing partial differential equations are converted into a set of nonlinear coupled ordinary differential equations with the help of suitable similarity transformations. Further, these equations have been solved numerically by using Runge-Kutta fourth order method along with shooting technique. Finally, we studied the influence of various non-dimensional governing parameters on the flow field through graphs and tables. Results indicate that Dufour and Soret numbers have tendency to enhance the fluid velocity. It is also found that Soret number enhances the heat transfer rate where as an opposite result is observed with Casson parameter. A comparison of the present results with the previous literature is also tabulated to show the accuracy of the results.


Sign in / Sign up

Export Citation Format

Share Document