Optimal formation control with limited communication for multi-unmanned aerial vehicle in an obstacle-laden environment

Author(s):  
Xiao Lin Ai ◽  
Jian Qiao Yu ◽  
Yong Bo Chen ◽  
Fang Zheng Chen ◽  
Yuan Chuan Shen

This paper investigates the formation control problem of multiple unmanned aerial vehicles (UAVs) with limited communication in a known and realistic obstacle-laden environment. In order to deal with the limited communication constraints, the leader–follower strategy and the virtual leader strategy are integrated into an optimal control framework to formulate this formation control problem. This combination formation framework can be achieved by integrating a redefined directed graph and a proposed information vector. In more practical applications, an obstacle/collision avoidance strategy is achieved by constructing a non-quadratic cost function innovatively using a virtual flow field approach. The proposed optimal control laws, which derive from the local information rather than the global information, are proved to guarantee the stability of the close-loop system by an inverse optimal control approach. The simulation results demonstrate the effectiveness of the formation flight of multiple UAVs with limited communication in an obstacle-laden environment.

Author(s):  
Fouad Yacef ◽  
Nassim Rizoug ◽  
Laid Degaa ◽  
Omar Bouhali ◽  
Mustapha Hamerlain

Unmanned aerial vehicles are used today in many real-world applications. In all these applications, the vehicle endurance (flight time) is an important constraint that affects mission success. This study investigates the limitations of embedded energy for a quadrotor aerial vehicle. We consider a quadrotor simple tasked to travel from an initial hover configuration to a final hover configuration. In order to have a precise approximation of the consumed energy, we propose a power consumption model with battery dynamic, motor dynamic, and rotor efficiency function. We then introduce an optimization algorithm to minimize the energy consumption during quadrotor aerial vehicle mission. The proposed algorithm is based on an optimal control problem formulated for the quadrotor model and solved using nonlinear programming. In the optimal control problem, we seek to find control inputs (rotor velocity) and vehicle trajectory between initial and final configurations that minimize the consumed energy during a point-to-point mission. We extensively test in simulation experiments the proposed algorithm under normal and windy weather conditions. We compare the proposed optimization method with a nonlinear adaptive control approach to highlight the saved amount of energy.


2020 ◽  
Vol 37 (4) ◽  
pp. 1192-1217
Author(s):  
Chuanrui Wang ◽  
Chuanxu Yan ◽  
Zhenchong Liu ◽  
Feng Cao

Abstract This paper deals with the ship course tracking control problem in a novel inverse optimal control approach. The inverse optimal stabilization problem and inverse optimal gain assignment problem are firstly extended to general systems affine in the control with unknown control gain. It is shown that a sufficient condition to solve the inverse optimal control problem is the existence of a stabilization control law in a special form for a corresponding auxiliary system. Then, by employing backstepping technique, control laws are designed which solve the inverse optimal stabilization, inverse optimal adaptive stabilization and inverse optimal adaptive gain assignment problem of ship course control system, respectively. Simulations are included to illustrate the effectiveness of the proposed control algorithms.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 91
Author(s):  
Md Ali Azam ◽  
Hans D. Mittelmann ◽  
Shankarachary Ragi

In this paper, we present a decentralized unmanned aerial vehicle (UAV) swarm formation control approach based on a decision theoretic approach. Specifically, we pose the UAV swarm motion control problem as a decentralized Markov decision process (Dec-MDP). Here, the goal is to drive the UAV swarm from an initial geographical region to another geographical region where the swarm must form a three-dimensional shape (e.g., surface of a sphere). As most decision-theoretic formulations suffer from the curse of dimensionality, we adapt an existing fast approximate dynamic programming method called nominal belief-state optimization (NBO) to approximately solve the formation control problem. We perform numerical studies in MATLAB to validate the performance of the above control algorithms.


2004 ◽  
Vol 14 (03) ◽  
pp. 355-374 ◽  
Author(s):  
L. J. ALVAREZ-VAZQUEZ ◽  
M. MARTA ◽  
A. MARTINEZ

In this paper, we study an optimal control problem with pointwise constraints on state and control, related to sterilization processes involving heat transfer by natural convection. We introduce the mathematical model for the state system, which couples the Boussinesq system for temperature-dependent viscosity and the convection-reaction-diffusion equations, and we set the whole problem as a control problem, assuring the micro-organism reduction, the nutrient retention and the energy saving. The existence and the regularity of the state are studied. Finally, we obtain existence results for the optimal solutions and a first-order optimality condition for their characterization.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Zhaoxia Peng ◽  
Shichun Yang ◽  
Guoguang Wen ◽  
Ahmed Rahmani

This paper investigates the distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partially known dynamics. Firstly, multirobot formation control problem has been converted into a state consensus problem. Secondly, the practical control strategies, which incorporate the distributed kinematic controllers and the robust adaptive torque controllers, are designed for solving the formation control problem. Thirdly, the specified reference trajectory for the geometric centroid of the formation is assumed as the trajectory of a virtual leader, whose information is available to only a subset of the followers. Finally, numerical results are provided to illustrate the effectiveness of the proposed control approaches.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Tiantian Yang ◽  
Zhiyuan Liu ◽  
Hong Chen ◽  
Run Pei

We consider the formation control problem of multiple wheeled mobile robots with parametric uncertainties and actuator saturations in the environment with obstacles. First, a nonconvex optimization problem is introduced to generate the collision-free trajectory. If the robots tracking along the reference trajectory find themselves moving close to the obstacles, a new collision-free trajectory is generated automatically by solving the optimization problem. Then, a distributed control scheme is proposed to keep the robots tracking the reference trajectory. For each interacting robot, optimal control problem is generated. And in the framework of LMI optimization, a distributed moving horizon control scheme is formulated as online solving each optimal control problem at each sampling time. Moreover, closed-loop properties inclusive of stability andH∞performance are discussed. Finally, simulation is performed to highlight the effectiveness of the proposed control law.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lina Jin ◽  
Shuanghe Yu ◽  
Dongxu Ren

This paper deals with the circular formation control problem of multiagent systems for achieving any preset phase distribution. The control problem is decomposed into two parts: the first is to drive all the agents to a circle which either needs a target or not and the other is to arrange them in positions distributed on the circle according to the preset relative phases. The first part is solved by designing a circular motion control law to push the agents to approach a rotating transformed trajectory, and the other is settled using a phase-distributed protocol to decide the agents’ positioning on the circle, where the ring topology is adopted such that each agent can only sense the relative positions of its neighboring two agents that are immediately in front of or behind it. The stability of the closed-loop system is analyzed, and the performance of the proposed controller is verified through simulations.


2015 ◽  
Vol 23 (1) ◽  
Author(s):  
Irwin Yousept

AbstractAn optimal bilinear control problem governed by time-harmonic eddy current equations is considered to estimate the electric conductivity of a 3D bounded isotropic domain. The model problem is mainly complicated by the possible presence of non-conducting materials in the domain. We introduce an optimal control approach based on grad-div regularization and divergence penalization. The estimation for the electric conductivity obtained by solving the optimal control problem is allowed to be discontinuous. Here, no higher regularity property can be derived from the corresponding optimality conditions. We analyze the approach and present various numerical results exhibiting its numerical performance


Author(s):  
Toru Namerikawa ◽  
Yasuhiro Kuriki ◽  
Ahmed Khalifa

In this paper, we consider cooperative control issues for a multi-unmanned aerial vehicle (UAV) system. We propose a cooperative formation control strategy with unidirectional network connections between UAVs. Our strategy is to apply a consensus-based algorithm to the UAVs so that they can cooperatively fly in formation. First, we show that UAV models on the horizontal plane and in the vertical direction are expressed as a fourth- and second-order system, respectively. Then, we show that the stability discriminants of the multi-UAV system on the horizontal plane and in the vertical direction are expressed as polynomials. For a network structure composed of bidirectional or unidirectional network connections under the assumption that the network has a directed spanning tree, we provide conditions for formation control gains such that all roots of the polynomials have negative real parts in order for the UAVs to asymptotically converge to the positions for a desired formation by using the generalized Routh stability criterion. The proposed control algorithms are validated through simulations, and experiments are performed on multiple commercial small UAVs to validate the proposed control algorithm.


Sign in / Sign up

Export Citation Format

Share Document