scholarly journals Optimal bilinear control of eddy current equations with grad–div regularization

2015 ◽  
Vol 23 (1) ◽  
Author(s):  
Irwin Yousept

AbstractAn optimal bilinear control problem governed by time-harmonic eddy current equations is considered to estimate the electric conductivity of a 3D bounded isotropic domain. The model problem is mainly complicated by the possible presence of non-conducting materials in the domain. We introduce an optimal control approach based on grad-div regularization and divergence penalization. The estimation for the electric conductivity obtained by solving the optimal control problem is allowed to be discontinuous. Here, no higher regularity property can be derived from the corresponding optimality conditions. We analyze the approach and present various numerical results exhibiting its numerical performance

2004 ◽  
Vol 14 (03) ◽  
pp. 355-374 ◽  
Author(s):  
L. J. ALVAREZ-VAZQUEZ ◽  
M. MARTA ◽  
A. MARTINEZ

In this paper, we study an optimal control problem with pointwise constraints on state and control, related to sterilization processes involving heat transfer by natural convection. We introduce the mathematical model for the state system, which couples the Boussinesq system for temperature-dependent viscosity and the convection-reaction-diffusion equations, and we set the whole problem as a control problem, assuring the micro-organism reduction, the nutrient retention and the energy saving. The existence and the regularity of the state are studied. Finally, we obtain existence results for the optimal solutions and a first-order optimality condition for their characterization.


Author(s):  
Fouad Yacef ◽  
Nassim Rizoug ◽  
Laid Degaa ◽  
Omar Bouhali ◽  
Mustapha Hamerlain

Unmanned aerial vehicles are used today in many real-world applications. In all these applications, the vehicle endurance (flight time) is an important constraint that affects mission success. This study investigates the limitations of embedded energy for a quadrotor aerial vehicle. We consider a quadrotor simple tasked to travel from an initial hover configuration to a final hover configuration. In order to have a precise approximation of the consumed energy, we propose a power consumption model with battery dynamic, motor dynamic, and rotor efficiency function. We then introduce an optimization algorithm to minimize the energy consumption during quadrotor aerial vehicle mission. The proposed algorithm is based on an optimal control problem formulated for the quadrotor model and solved using nonlinear programming. In the optimal control problem, we seek to find control inputs (rotor velocity) and vehicle trajectory between initial and final configurations that minimize the consumed energy during a point-to-point mission. We extensively test in simulation experiments the proposed algorithm under normal and windy weather conditions. We compare the proposed optimization method with a nonlinear adaptive control approach to highlight the saved amount of energy.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750054 ◽  
Author(s):  
El Hassan Zerrik ◽  
Nihale El Boukhari

The aim of this paper is to investigate the optimal control problem for finite-dimensional bilinear systems and its application to a chemotherapy model. We characterize an optimal control that minimizes a quadratic cost functional in two cases of constrained admissible controls, then we give sufficient conditions for the uniqueness of such a control, and we derive useful algorithms for the computation of the optimal control. The established results are applied to a cancer chemotherapy bilinear model in order to simulate the optimal treatment protocol using two different approaches: one based on a limited instant toxicity, and the other on a limited cumulative toxicity along the therapy session.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050018
Author(s):  
G. Rigatos ◽  
M. Abbaszadeh ◽  
J. Pomares ◽  
P. Wira

The use of robotic limb exoskeletons is growing fast either for rehabilitation purposes or in an aim to enhance human ability for lifting heavy objects or for walking for long distances without fatigue. The paper proposes a nonlinear optimal control approach for a lower-limb robotic exoskeleton. The method has been successfully tested so far on the control problem of several types of robotic manipulators and this paper shows that it can also provide an optimal solution to the control problem of limb robotic exoskeletons. To implement this control scheme, the state-space model of the lower-limb robotic exoskeleton undergoes first approximate linearization around a temporary operating point, through first-order Taylor series expansion and through the computation of the associated Jacobian matrices. To select the feedback gains of the H-infinity controller an algebraic Riccati equation is solved at each time-step of the control method. The global stability properties of the control loop are proven through Lyapunov analysis. Finally, to implement state estimation-based feedback control, the H-infinity Kalman Filter is used as a robust state estimator.


2020 ◽  
Vol 26 ◽  
pp. 29 ◽  
Author(s):  
Francisco Guillén-González ◽  
Exequiel Mallea-Zepeda ◽  
María Ángeles Rodríguez-Bellido

In this paper, we study a bilinear optimal control problem associated to a chemo-repulsion model with linear production term in a bidimensional domain. The existence, uniqueness and regularity of strong solutions of this model are deduced, proving the existence of a global optimal solution. Afterwards, we derive first-order optimality conditions by using a Lagrange multipliers theorem.


Author(s):  
Xiao Lin Ai ◽  
Jian Qiao Yu ◽  
Yong Bo Chen ◽  
Fang Zheng Chen ◽  
Yuan Chuan Shen

This paper investigates the formation control problem of multiple unmanned aerial vehicles (UAVs) with limited communication in a known and realistic obstacle-laden environment. In order to deal with the limited communication constraints, the leader–follower strategy and the virtual leader strategy are integrated into an optimal control framework to formulate this formation control problem. This combination formation framework can be achieved by integrating a redefined directed graph and a proposed information vector. In more practical applications, an obstacle/collision avoidance strategy is achieved by constructing a non-quadratic cost function innovatively using a virtual flow field approach. The proposed optimal control laws, which derive from the local information rather than the global information, are proved to guarantee the stability of the close-loop system by an inverse optimal control approach. The simulation results demonstrate the effectiveness of the formation flight of multiple UAVs with limited communication in an obstacle-laden environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Kaifan Huang ◽  
Pengdeng Li ◽  
Lu-Xing Yang ◽  
Xiaofan Yang ◽  
Yuan Yan Tang

To restrain escalating computer viruses, new virus patches must be constantly injected into networks. In this scenario, the patch-developing cost should be balanced against the negative impact of virus. This article focuses on seeking best-balanced patch-injecting strategies. First, based on a novel virus-patch interactive model, the original problem is reduced to an optimal control problem, in which (a) each admissible control stands for a feasible patch-injecting strategy and (b) the objective functional measures the balance of a feasible patch-injecting strategy. Second, the solvability of the optimal control problem is proved, and the optimality system for solving the problem is derived. Next, a few best-balanced patch-injecting strategies are presented by solving the corresponding optimality systems. Finally, the effects of some factors on the best balance of a patch-injecting strategy are examined. Our results will be helpful in defending against virus attacks in a cost-effective way.


2020 ◽  
Vol 37 (4) ◽  
pp. 1192-1217
Author(s):  
Chuanrui Wang ◽  
Chuanxu Yan ◽  
Zhenchong Liu ◽  
Feng Cao

Abstract This paper deals with the ship course tracking control problem in a novel inverse optimal control approach. The inverse optimal stabilization problem and inverse optimal gain assignment problem are firstly extended to general systems affine in the control with unknown control gain. It is shown that a sufficient condition to solve the inverse optimal control problem is the existence of a stabilization control law in a special form for a corresponding auxiliary system. Then, by employing backstepping technique, control laws are designed which solve the inverse optimal stabilization, inverse optimal adaptive stabilization and inverse optimal adaptive gain assignment problem of ship course control system, respectively. Simulations are included to illustrate the effectiveness of the proposed control algorithms.


Sign in / Sign up

Export Citation Format

Share Document