The effect of actuator and its coupling conditions on eardrum-stimulated middle ear implants: A numerical analysis

Author(s):  
Dan Xu ◽  
Houguang Liu ◽  
Lei Zhou ◽  
Gang Cheng ◽  
Jianhua Yang ◽  
...  

Consisting of the actuator and coupling layer, a finite element model of the human middle ear was used to analyze the effect of the actuator and its coupling conditions on the performance of the eardrum-stimulated middle ear implants. This model which was based on the right ear of a healthy adult was built via microcomputed tomography imaging and the technique of reverse engineering. Based on this finite element model, the linear viscoelasticity of the human middle ear soft tissues and three-layer structure of the eardrum pars tensa which was orthotropic were considered. The validity of the model was verified by comparing the model calculated results with experimental data. After that, the influence of the three main design parameters of the actuator and two aspects of the coupling layer were investigated by the finite element model. The results show that (1) the manubrium tip is the optimal position for the actuator to stimulate; (2) the increased cross-section of the actuator would worsen its hearing compensation performance, especially in the low frequencies; (3) both the patients’ residual hearing and the actuator’s hearing compensation performance at high frequencies will be deteriorated with the increase in the actuator’s mass; and (4) a coupling layer with a small Young’s modulus and an area approximating 80% of the eardrum would reduce the stress of the eardrum effectively.

2015 ◽  
Vol 66 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Luis A. Vallejo Valdezate ◽  
Antonio Hidalgo Otamendi ◽  
Alberto Hernández ◽  
Fernando Lobo ◽  
Elisa Gil-Carcedo Sañudo ◽  
...  

2001 ◽  
Vol 30 (06) ◽  
pp. 340 ◽  
Author(s):  
Sam J. Daniel ◽  
W. Robert J. Funnell ◽  
Anthony G. Zeitouni ◽  
Melvin D. Schloss ◽  
Jamie Rappaport

2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


2000 ◽  
Author(s):  
Hsien-Chie Cheng ◽  
Ming-Hsiao Lee ◽  
Kuo-Ning Chiang ◽  
Chung-Wen Chang

Abstract Since the electrical conduction in the COG assembly using a non-conductive adhesive takes place through the connection of the bump and the electrodes, the contact resistance can be applied to the evaluation of the design quality as well as the overall reliability of the particular assembly. It should be further noted that as reported in the literature (e.g., see Liu, 1996; Kristiansen et al, 1998; Nicewarner, 1999; Timsit, 1999), the contact resistance between the bump and the electrode on the substrate strongly depends on the contact stress and the contact area. A higher reliability of the packaging somewhat relies on better contact stability as well as larger bonding stresses. In order to explore the physical contact behaviors of a non-conductive adhesive type of COG assemblies, the contact pressure during manufacturing process sequences and during the temperature variation are extensively investigated using a three-dimensional nonlinear finite element model. The so-called death-birth simulation technique is applied to model the manufacturing process sequences. The typical COG assemblies associated with two types of micro-bumps that are made of different materials: metal and composite are considered as the test vehicle. The contact stress between the electrode and the bump is extensively compared at each manufacturing sequence as well as at elevated temperature in order to investigate the corresponding mechanical interaction. Furthermore, the adhesion stresses of the adhesive are also evaluated to further investigate the possibilities of cracking or delamination within the adhesive and in its interfaces with the die and with the substrate. At last, a parametric finite element model is performed over number of geometry/material design parameters to investigate their impact on the contact/adhesion stresses so as to attain a better reliability design.


2010 ◽  
Vol 55 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Marc Hoffstetter ◽  
Florian Schardt ◽  
Thomas Lenarz ◽  
Sabine Wacker ◽  
Erich Wintermantel

Author(s):  
Dongxu Li ◽  
Brian Uy ◽  
Farhad Aslani ◽  
Chao Hou

Spiral welded stainless tubes are produced by helical welding of a continuous strip of stainless steel. Recently, concrete-filled spiral welded stainless steel tubes have found increasing application in the construction industry due to their ease of fabrication and aesthetic appeal. However, an in-depth understanding of the behaviour of this type of structure is still needed due to the lack of proper design guidance and insufficient experimental verification. In this paper, the mechanical performance of concrete-filled spiral welded stainless steel tubes will be numerically investigated with a commercial finite element software package, through which an experimental program can be designed properly. Specifically, the proposed finite element models take into account the effects of material and geometric nonlinearities. Moreover, the initial imperfections of stainless steel tubes and the form of helical welding will be appropriately included. Enhancement of the understanding of the analysis results can be achieved by extending results through a series of parametric studies based on the developed finite element model. Thus, the effects of various design parameters will be further evaluated by using the developed finite element model. Furthermore, for the purposes of wide application of such types of structure, the accuracy of the behaviour prediction in terms of ultimate strength based on current design codes will be studied. The authors herein compared the load capacity between the finite element analysis results and the existing codes of practice.


2020 ◽  
Vol 9 (2) ◽  
pp. 586
Author(s):  
Chang-Hee Cho ◽  
Dong-Hoon Kim ◽  
Sang-Eon Park

This study examines how the designing of an electrostatic precipitator can be carried out in a simple way. While it is of value to find out the theoretical values of design parameters using three-dimensional finite element model and numerical method, this study shows that employ-ing a two-dimensional finite element model and easily usable public-domain program is equally simple and fast. Variations of some physical properties occurring between an electrode and a duct are expressed using two design parameters. In this process, the design of the experi-ment and the response surface method are used based on the two-dimensional finite element model, as well as electrostatic simulation. A test using an electrostatic precipitator is performed and it is confirmed that a variation of corona power by the test is most similar with the varia-tion of stored energy by the simulation. A conversion factor that can predict corona power with the response surface function for the stored energy is proposed.  


Sign in / Sign up

Export Citation Format

Share Document