scholarly journals Miniature low-cost γ-radiation sensor for localization of radioactively marked lymph nodes

Author(s):  
Merlin Behling ◽  
Felix Wezel ◽  
Peter P Pott

Detection of metastasis spread at an early stage of disease in lymph nodes can be achieved by imaging techniques, such as PET and fluoride-marked tumor cells. Intraoperative detection of small metastasis can be problematic especially in minimally invasive surgical settings. A γ-radiation sensor can be inserted in the situs to facilitate intraoperative localization of the lymph nodes. In the minimally invasive setting, the sensor must fit through the trocar and for robot-aided interventions, a small, capsule-like device is favorable. Size reduction could be achieved by using only a few simple electronic parts packed in a single-use sensor-head also leading to a low-cost device. This paper first describes the selection of an appropriate low-cost diode, which is placed in a sensor head (Ø 12 mm) and characterized in a validation experiment. Finally, the sensor and its performance during a detection experiment with nine subjects is evaluated. The subjects had to locate a 137Cs source (138 kBq activity, 612 keV) below a wooden plate seven times. Time to accomplish this task and error rate were recorded and evaluated. The time needed by the subjects to complete each run was 95 ± 68.1 s for the first trial down to 40 ± 23.9 s for the last. All subjects managed to locate the 137Cs source precisely. Further reduction in size and a sterilizable housing are prerequisites for in vitro tests on explanted human lymph nodes and finally in vivo testing.

Author(s):  
Shoaib Amin Banday ◽  
Mohammad Khalid Pandit

Introduction: Brain tumor is among the major causes of morbidity and mortality rates worldwide. According to National Brain Tumor Foundation (NBTS), the death rate has nearly increased by as much as 300% over last couple of decades. Tumors can be categorized as benign (non-cancerous) and malignant (cancerous). The type of the brain tumor significantly depends on various factors like the site of its occurrence, its shape, the age of the subject etc. On the other hand, Computer Aided Detection (CAD) has been improving significantly in recent times. The concept, design and implementation of these systems ascend from fairly simple ones to computationally intense ones. For efficient and effective diagnosis and treatment plans in brain tumor studies, it is imperative that an abnormality is detected at an early stage as it provides a little more time for medical professionals to respond. The early detection of diseases has predominantly been possible because of medical imaging techniques developed from past many decades like CT, MRI, PET, SPECT, FMRI etc. The detection of brain tumors however, has always been a challenging task because of the complex structure of the brain, diverse tumor sizes and locations in the brain. Method: This paper proposes an algorithm that can detect the brain tumors in the presence of the Radio-Frequency (RF) inhomoginiety. The algorithm utilizes the Mid Sagittal Plane as a landmark point across which the asymmetry between the two brain hemispheres is estimated using various intensity and texture based parameters. Result: The results show the efficacy of the proposed method for the detection of the brain tumors with an acceptable detection rate. Conclusion: In this paper, we have calculated three textural features from the two hemispheres of the brain viz: Contrast (CON), Entropy (ENT) and Homogeneity (HOM) and three parameters viz: Root Mean Square Error (RMSE), Correlation Co-efficient (CC), and Integral of Absolute Difference (IAD) from the intensity distribution profiles of the two brain hemispheres to predict any presence of the pathology. First a Mid Sagittal Plane (MSP) is obtained on the Magnetic Resonance Images that virtually divides brain into two bilaterally symmetric hemispheres. The block wise texture asymmetry is estimated for these hemispheres using the above 6 parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Germano Heinzelmann ◽  
Michael K. Gilson

AbstractAbsolute binding free energy calculations with explicit solvent molecular simulations can provide estimates of protein-ligand affinities, and thus reduce the time and costs needed to find new drug candidates. However, these calculations can be complex to implement and perform. Here, we introduce the software BAT.py, a Python tool that invokes the AMBER simulation package to automate the calculation of binding free energies for a protein with a series of ligands. The software supports the attach-pull-release (APR) and double decoupling (DD) binding free energy methods, as well as the simultaneous decoupling-recoupling (SDR) method, a variant of double decoupling that avoids numerical artifacts associated with charged ligands. We report encouraging initial test applications of this software both to re-rank docked poses and to estimate overall binding free energies. We also show that it is practical to carry out these calculations cheaply by using graphical processing units in common machines that can be built for this purpose. The combination of automation and low cost positions this procedure to be applied in a relatively high-throughput mode and thus stands to enable new applications in early-stage drug discovery.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
J. M. Lazarus ◽  
M. Ncube

Abstract Background Technology currently used for surgical endoscopy was developed and is manufactured in high-income economies. The cost of this equipment makes technology transfer to resource constrained environments difficult. We aimed to design an affordable wireless endoscope to aid visualisation during rigid endoscopy and minimally invasive surgery (MIS). The initial prototype aimed to replicate a 4-mm lens used in rigid cystoscopy. Methods Focus was placed on using open-source resources to develop the wireless endoscope to significantly lower the cost and make the device accessible for resource-constrained settings. An off the shelf miniature single-board computer module was used because of its low cost (US$10) and its ability to handle high-definition (720p) video. Open-source Linux software made monitor mode (“hotspot”) wireless video transmission possible. A 1280 × 720 pixel high-definition tube camera was used to generate the video signal. Video is transmitted to a standard laptop computer for display. Bench testing included latency of wireless digital video transmission. Comparison to industry standard wired cameras was made including weight and cost. The battery life was also assessed. Results In comparison with industry standard cystoscope lens, wired camera, video processing unit and light source, the prototype costs substantially less. (US$ 230 vs 28 000). The prototype is light weight (184 g), has no cables tethering and has acceptable battery life (of over 2 h, using a 1200 mAh battery). The camera transmits video wirelessly in near real time with only imperceptible latency of < 200 ms. Image quality is high definition at 30 frames per second. Colour rendering is good, and white balancing is possible. Limitations include the lack of a zoom. Conclusion The novel wireless endoscope camera described here offers equivalent high-definition video at a markedly reduced cost to contemporary industry wired units and could contribute to making minimally invasive surgery possible in resource-constrained environments.


2021 ◽  
pp. 197140092110269
Author(s):  
Prateek Gupta ◽  
Sameer Vyas ◽  
Teddy Salan ◽  
Chirag Jain ◽  
Sunil Taneja ◽  
...  

Background and purposes Minimal hepatic encephalopathy (MHE) has no recognizable clinical symptoms, but patients have cognitive and psychomotor deficits. Hyperammonemia along with neuroinflammation lead to microstructural changes in cerebral parenchyma. Changes at conventional imaging are detected usually at the overt clinical stage, but microstructural alterations by advanced magnetic resonance imaging techniques can be detected at an early stage. Materials and methods Whole brain diffusion kurtosis imaging (DKI) data acquired at 3T was analyzed to investigate microstructural parenchymal changes in 15 patients with MHE and compared with 15 age- and sex-matched controls. DKI parametric maps, namely kurtosis fractional anisotropy (kFA), mean kurtosis (MK), axial kurtosis (AK) and radial kurtosis (RK), were evaluated at 64 white matter (WM) and gray matter (GM) regions of interest (ROIs) in the whole brain and correlated with the psychometric hepatic encephalopathy score (PHES). Results The MHE group showed a decrease in kFA and AK across the whole brain, whereas MK and RK decreased in WM ROIs but increased in several cortical and deep GM ROIs. These alterations were consistent with brain regions involved in cognitive function. Significant moderate to strong correlations (–0.52 to –0.66; 0.56) between RK, MK and kFA kurtosis metrics and PHES were observed. Conclusion DKI parameters show extensive microstructural brain abnormalities in MHE with minor correlation between the severity of tissue damage and psychometric scores.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alexander Ziegler ◽  
Christina Sagorny

Abstract Background In zoology, species descriptions conventionally rely on invasive morphological techniques, frequently leading to damage of the specimens and thus only a partial understanding of their structural complexity. More recently, non-destructive imaging techniques have successfully been used to describe smaller fauna, but this approach has so far not been applied to identify or describe larger animal species. Here, we present a combination of entirely non-invasive as well as minimally invasive methods that permit taxonomic descriptions of large zoological specimens in a more comprehensive manner. Results Using the single available representative of an allegedly novel species of deep-sea cephalopod (Mollusca: Cephalopoda), digital photography, standardized external measurements, high-field magnetic resonance imaging, micro-computed tomography, and DNA barcoding were combined to gather all morphological and molecular characters relevant for a full species description. The results show that this specimen belongs to the cirrate octopod (Octopoda: Cirrata) genus Grimpoteuthis Robson, 1932. Based on the number of suckers, position of web nodules, cirrus length, presence of a radula, and various shell characters, the specimen is designated as the holotype of a new species of dumbo octopus, G. imperator sp. nov. The digital nature of the acquired data permits a seamless online deposition of raw as well as derived morphological and molecular datasets in publicly accessible repositories. Conclusions Using high-resolution, non-invasive imaging systems intended for the analysis of larger biological objects, all external as well as internal morphological character states relevant for the identification of a new megafaunal species were obtained. Potentially harmful effects on this unique deep-sea cephalopod specimen were avoided by scanning the fixed animal without admixture of a contrast agent. Additional support for the taxonomic placement of the new dumbo octopus species was obtained through DNA barcoding, further underlining the importance of combining morphological and molecular datasets for a holistic description of zoological specimens.


Sign in / Sign up

Export Citation Format

Share Document