sensor head
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Merlin Behling ◽  
Felix Wezel ◽  
Peter P Pott

Detection of metastasis spread at an early stage of disease in lymph nodes can be achieved by imaging techniques, such as PET and fluoride-marked tumor cells. Intraoperative detection of small metastasis can be problematic especially in minimally invasive surgical settings. A γ-radiation sensor can be inserted in the situs to facilitate intraoperative localization of the lymph nodes. In the minimally invasive setting, the sensor must fit through the trocar and for robot-aided interventions, a small, capsule-like device is favorable. Size reduction could be achieved by using only a few simple electronic parts packed in a single-use sensor-head also leading to a low-cost device. This paper first describes the selection of an appropriate low-cost diode, which is placed in a sensor head (Ø 12 mm) and characterized in a validation experiment. Finally, the sensor and its performance during a detection experiment with nine subjects is evaluated. The subjects had to locate a 137Cs source (138 kBq activity, 612 keV) below a wooden plate seven times. Time to accomplish this task and error rate were recorded and evaluated. The time needed by the subjects to complete each run was 95 ± 68.1 s for the first trial down to 40 ± 23.9 s for the last. All subjects managed to locate the 137Cs source precisely. Further reduction in size and a sterilizable housing are prerequisites for in vitro tests on explanted human lymph nodes and finally in vivo testing.


2021 ◽  
Vol 18 ◽  
pp. 100135
Author(s):  
Yuki Shimizu ◽  
Lue Quan ◽  
Dong Wook Shin ◽  
Hiraku Matsukuma ◽  
Wei Gao

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7984
Author(s):  
Qian Yang ◽  
Laixu Gao ◽  
Changwei Zou ◽  
Wei Xie ◽  
Canxin Tian ◽  
...  

We proposed a differential fiber-optic refractive index sensor based on coupled plasmon waveguide resonance (CPWR) in the C-band. The sensor head is a BK7 prism coated with ITO/Au/ITO/TiO2 film. CPWR is excited on the film by the S-polarized components of an incident light. The narrow absorption peak of CPWR makes it possible to realize dual-wavelength differential intensity (DI) interrogation by using only one incident point. To implement DI interrogation, we used a DWDM component to sample the lights with central wavelengths of 1529.55 and 1561.42 nm from the lights reflected back by the sensor head. The intensities of the dual-wavelength lights varied oppositely within the measurement range of refractive index, thus, a steep slope was produced as the refractive index of the sample increased. The experimental results show that the sensitivity is 32.15/RIUs within the measurement range from 1.3584 to 1.3689 and the resolution reaches 9.3 × 10−6 RIUs. Benefiting from the single incident point scheme, the proposed sensor would be easier to calibrate in bio-chemical sensing applications. Moreover, this sensing method is expected to be applied to retro-reflecting SPR sensors with tapered fiber tip to achieve better resolution than wavelength interrogation.


2021 ◽  
Author(s):  
Jongmin Lee ◽  
Roger Ding ◽  
Justin Christensen ◽  
Randy Rosenthal ◽  
Aaron Ison ◽  
...  

Abstract The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. We describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. The vacuum package is integrated into the optomechanical design of a compact cold-atom sensor head with fixed optical components. In addition, a multichannel laser system driven by a single seed laser has been implemented with time-multiplexed frequency shifting using single sideband modulators, reducing the number of optical channels connected to the sensor head. This laser system architecture is compatible with a highly miniaturized photonic integrated circuit approach, and by demonstrating atom-interferometer operation with this laser system, we show feasibility for the integrated photonic approach. In the compact sensor head, sub-Doppler cooling in the GMOT produces 15 μK temperatures, which can operate at a 20 Hz data rate for the atom interferometer sequence. After validating atomic coherence with Ramsey interferometry, we demonstrate a light-pulse atom interferometer in a gravimeter configuration without vibration isolation for 10 Hz measurement cycle rate and T = 0 - 4.5 ms interrogation time, resulting in Δg/g = 2.0e-6. All these efforts demonstrate progress towards deployable cold-atom inertial sensors under large amplitude motional dynamics.


Author(s):  
Guido Straube ◽  
Juan Sebastian Fischer Calderón ◽  
Ingo Ortlepp ◽  
Roland Füßl ◽  
Eberhard Manske

AbstractAs standard concepts for precision positioning within a machine reach their limits with increasing measurement volumes, inverse concepts are a promising approach for addressing this problem. The inverse principle entails other limitations, as for high-precision positioning of a sensor head within a large measurement volume, three four-beam interferometers are required in order to measure all necessary translations and rotations of the sensor head and reconstruct the topography of the reference system consisting of fixed mirrors in the x-, y-, and z-directions. We present the principle of a passive heterodyne laser interferometer with consequently separated beam paths for the individual heterodyne frequencies. The beam path design is illustrated and described, as well as the design of the signal-processing and evaluation algorithm, which is implemented using a System-On-a-Chip with an integrated FPGA, CPU, and A/D converters. A streamlined bench-top optical assembly was set up and measurements were carried out to investigate the remaining non-linearities. Additionally, reference measurements with a commercial homodyne interferometer were executed.


Author(s):  
Ritvik Sethi ◽  
Shlok Kumar ◽  
Deepansh Gupta ◽  
Priyansh Kumar Mangal ◽  
Ansh Pujara

The ultrasonic sensors measure distance by using ultrasonic waves. The sensor head emits an ultrasonic wave and receives the wave reflected back from the target. Ultrasonic Sensors measure the distance to the target by measuring the time between the emission and reception. By using the above application the shoes designed provide a vibration when an obstacle comes near to the shoe. The shoes helps the blind to walk freely unlike traditionally when they need to always carry a walking stick which was not much reliable. The shoes are designed and programmed to alarm the stepper when a massive obstacle reaches within its range of 0-0.5 meters.


2021 ◽  
Vol 21 (3) ◽  
pp. 1883-1889
Author(s):  
Min Seok Kim ◽  
Do Kyung Kim ◽  
Jihoon Kim ◽  
Seul-Lee Lee ◽  
Sungwook Choi ◽  
...  

Here we report an optical fiber sensor capable of performing strain-insensitive simultaneous measurement of bending and temperature using a long-period fiber grating (LPFG) inscribed on doubleclad fiber (DCF) with a CO2 laser at ˜10.6 μm. The LPFG inscribed on DCF, referred to as a DC-LPFG, was fabricated by scanning CO2 laser pulses on an unjacketed DCF with a specific period. Due to co-directional mode coupling, the fabricated DC-LPFG has discrete attenuation bands widely distributed over hundreds of nanometers. Among these wavelength-dependent loss dips, adjacent two dips with different resonance wavelengths were selected as sensor indicators for the measurement of bending and temperature. For these two indicator dips designated as dips A and B, their bending and temperature responses were investigated in a curvature range of 4.90 to 21.91 m−1 and a temperature range of 30 to 110 °C. With increasing bending applied to the DC-LPFG at room temperature, dips A and B showed different blue shifts. The bending sensitivities of dips A and B were measured to be approximately −0.77 and 0.51 nm/m−1, respectively. Unlike the bending response, they showed red shifts of different amounts with increasing ambient temperature, while the sensor head (i.e., the DC-LPFG) remained straight without any applied bending. The temperature sensitivities of dips A and B were measured to be ˜0.094 and ˜0.078 nm/°C, respectively. Owing to their linear and independent responses to bending and temperature, bending and temperature changes applied to the DC-LPFG could be simultaneously estimated from the measured wavelength shifts of the two indicator dips using their pre-determined bending and temperature sensitivities. Moreover, in a strain range of 0 to 2200 με (step: 200 με), strain-induced spectral variations of dips A and B were also measured, and the strain sensitivities of dips A and B were evaluated as approximately −0.028 and −0.013 pm/με, respectively. These strain-induced wavelength shifts were so small that they had little effect on the measurement results of bending and temperature. Thus, it is concluded that the fabricated DC-LPFG can be employed as a cost-effective sensor head for strain-insensitive separate measurement of bending and temperature.


2021 ◽  
Vol 58 (5) ◽  
pp. 0506003-506003117
Author(s):  
肖登 Xiao Deng ◽  
万生鹏 Wan Shengpeng ◽  
尹玺 Yin Xi ◽  
刘恒 Liu Heng ◽  
熊新中 Xiong Xinzhong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document