Separate Contribution of Striatum Volume and Pitch Discrimination to Individual Differences in Music Reward

2019 ◽  
Vol 30 (9) ◽  
pp. 1352-1361 ◽  
Author(s):  
Mireia Hernández ◽  
María-Ángeles Palomar-García ◽  
Benito Nohales-Nieto ◽  
Gustau Olcina-Sempere ◽  
Esteban Villar-Rodríguez ◽  
...  

Individual differences in the level of pleasure induced by music have been associated with the response of the striatum and differences in functional connectivity between the striatum and the auditory cortex. In this study, we tested whether individual differences in music reward are related to the structure of the striatum and the ability to discriminate pitch. We acquired a 3-D magnetization-prepared rapid-acquisition gradient-echo image for 32 musicians and 26 nonmusicians who completed a music-reward questionnaire and a test of pitch discrimination. The analysis of both groups together showed that sensitivity to music reward correlated negatively with the volume of both the caudate and nucleus accumbens and correlated positively with pitch-discrimination abilities. Moreover, musicianship, pitch discrimination, and caudate volume significantly predicted individual differences in music reward. These results are consistent with the proposal that individual differences in music reward depend on the interplay between auditory abilities and the reward network.

Author(s):  
Vidhusha Srinivasan ◽  
N. Udayakumar ◽  
Kavitha Anandan

Background: The spectrum of autism encompasses High Functioning Autism (HFA) and Low Functioning Autism (LFA). Brain mapping studies have revealed that autism individuals have overlaps in brain behavioural characteristics. Generally, high functioning individuals are known to exhibit higher intelligence and better language processing abilities. However, specific mechanisms associated with their functional capabilities are still under research. Objective: This work addresses the overlapping phenomenon present in autism spectrum through functional connectivity patterns along with brain connectivity parameters and distinguishes the classes using deep belief networks. Methods: The task-based functional Magnetic Resonance Images (fMRI) of both high and low functioning autistic groups were acquired from ABIDE database, for 58 low functioning against 43 high functioning individuals while they were involved in a defined language processing task. The language processing regions of the brain, along with Default Mode Network (DMN) have been considered for the analysis. The functional connectivity maps have been plotted through graph theory procedures. Brain connectivity parameters such as Granger Causality (GC) and Phase Slope Index (PSI) have been calculated for the individual groups. These parameters have been fed to Deep Belief Networks (DBN) to classify the subjects under consideration as either LFA or HFA. Results: Results showed increased functional connectivity in high functioning subjects. It was found that the additional interaction of the Primary Auditory Cortex lying in the temporal lobe, with other regions of interest complimented their enhanced connectivity. Results were validated using DBN measuring the classification accuracy of 85.85% for high functioning and 81.71% for the low functioning group. Conclusion: Since it is known that autism involves enhanced, but imbalanced components of intelligence, the reason behind the supremacy of high functioning group in language processing and region responsible for enhanced connectivity has been recognized. Therefore, this work that suggests the effect of Primary Auditory Cortex in characterizing the dominance of language processing in high functioning young adults seems to be highly significant in discriminating different groups in autism spectrum.


2019 ◽  
Author(s):  
John D. Lewis ◽  
Gleb Bezgin ◽  
Vladimir S. Fonov ◽  
D. Louis Collins ◽  
Alan C. Evans

AbstractBoth the cortex and the subcortical structures are organized into a large number of distinct areas reflecting functional and cytoarchitectonic differences. Mapping these areas is of fundamental importance to neuroscience. A central obstacle to this task is the inaccuracy associated with mapping results from individuals into a common space. The vast individual differences in morphology pose a serious problem for volumetric registration. Surface-based approaches fare substantially better, but have thus far been used only for cortical parcellation. We extend this surface-based approach to include also the subcortical deep gray-matter structures. Using the life-span data from the Enhanced Nathan Klein Institute - Rockland Sample, comprised of data from 590 individuals from 6 to 85 years of age, we generate a functional parcellation of both the cortical and subcortical surfaces. To assess this extended parcellation, we show that our extended functional parcellation provides greater homogeneity of functional connectivity patterns than do arbitrary parcellations matching in the number and size of parcels. We also show that our subcortical parcels align with known subnuclei. Further, we show that this parcellation is appropriate for use with data from other modalities; we generate cortical and subcortical white/gray contrast measures for this same dataset, and draw on the fact that areal differences are evident in the relation of white/gray contrast to age, to sex, to brain volume, and to interactions of these terms; we show that our extended functional parcellation provides an improved fit to the complexity of the life-span changes in the white/gray contrast data compared to arbitrary parcellations matching in the number and size of parcels. We provide our extended functional parcellation for the use of the neuroimaging community.


2021 ◽  
Author(s):  
Shervin Assari

While studies have indicated an association between socioeconomic status (SES) and neuroimaging measures, weaker SES effects are shown for Blacks than Whites. This is, in part, due to processes such as stratification, racism, minoritization, and othering of Black people in the United States. However, less is known about Latino youth. This study had two aims: First, to test the association between parental education and the right and left nucleus accumbens (NAcc) resting-state functional connectivity with the frontoparietal network (FPN) in children; and second, to investigate ethnic heterogeneity in this association. This cross-sectional study used data from the Adolescent Brain Cognitive Development (ABCD) study. We analyzed the resting-state functional connectivity data (rsFC) of 10,840 US preadolescents who were between 9 and 10 years old. The main outcomes were the NAcc resting-state functional connectivity with FPN separately calculated for right and left hemispheres. Parental education was our independent variable. Family structure, sex, and age were covariates. Furthermore, ethnicity (Latino vs. non-Latino) was regarded as the moderator. We used mixed-effects regression for data analysis with and without interaction terms between parental education and ethnicity. Most participants (n = 8690; 80.2%) were non-Latino and 2150 (19.8%) were Latino. Parental education was associated with higher right and left NAcc resting-state functional connectivity with FPN. Ethnicity showed statistically significant interactions with parental education, suggesting that the positive associations between parental education and right and left NAcc resting-state functional connectivity with FPN were different in non-Latino and Latino children. For right hemisphere, we found significantly stronger and for left hemisphere, we found significantly weaker association for Latino compared with non-Latino preadolescents. Preadolescents’ NAcc resting-state functional connectivity with FPN depends on the intersections of ethnicity, parental education, and laterality.


Sign in / Sign up

Export Citation Format

Share Document