A review study on using diethyl ether in diesel engines: Effects on fuel properties, injection, and combustion characteristics

2019 ◽  
Vol 31 (2) ◽  
pp. 179-214 ◽  
Author(s):  
İsmet Sezer

This study was compiled from the results of various researches performed on using diethyl ether as a fuel or fuel additive in diesel engines. Three different techniques are used, the reduction of the harmful exhaust emissions of diesel engines. The first technique for the reduction of harmful emissions has improved the combustion by modification of engine design and fuel injection system, but this process is expensive and time-consuming. The second technique is the use of various exhaust gas devices like catalytic converter and diesel particulate filter. However, the use of these devices affects negatively diesel engine performance. The final technique to reduce emissions and also improve diesel engine performance is the use of various alternative fuels or fuel additives. The major pollutants of diesel engines are nitrogen oxides and particulate matter. It is very difficult to reduce nitrogen oxides and particulate matter emissions simultaneously in practice. Most researches declare that the best way to reduce these emissions is the use of various alternative fuels i.e. natural gas, biogas, biodiesel, or the use of fuel additives with these alternative fuels or conventional diesel fuel. Therefore, it is very important that the results of various studies on alternative fuels or fuel additives are evaluated together for practice applications. Especially, this study focuses on the use of diethyl ether in diesel engines as fuel or fuel additive in various diesel engine fuels. This review study investigates the effects of diethyl ether on the fuel properties, injection, and combustion characteristics.

2018 ◽  
Vol 11 (2) ◽  
pp. 74-78
Author(s):  
Obed M. Ali ◽  
Fattah H. Hasan ◽  
Abid Z. Khalaf

Diesel engine is widely used in the different applications of the modern life. Diesel fuel quality is an important indicator of the engine efficiency and exhaust emissions. However, the low cetane number of the commercial diesel resulting from improper refining processes lead to significant reduction in the engine efficiency. Hence, the aim of this study is to use diethyl ether to improve the fuel quality for better engine performance at lower engine emissions. Diethyl ether has been used at 5% percentage with commercial diesel, and the cetane number of the fuel was measured. Engine test was conducted at increasing speed to evaluate the engine performance and emissions. The study results show an improvement in the fuel cetane number from 49 to 51 with 5% diethyl ether. Furthermore, significant increase in engine power by about 10% has been recorded for the whole engine speed with slightly lower specific fuel consumption at low and medium engine speeds. Moreover, noticeable reduction in NOx emissions and CO emissions has been observed compared to commercial diesel. Therefore, it can be concluded that the utilization of diethyl ether as a fuel additive with commercial diesel can be considered for improving engine efficiency and control exhaust emissions.


2019 ◽  
Vol 140 ◽  
pp. 11004
Author(s):  
Vladimir Markov ◽  
Vyacheslav Kamaltdinov ◽  
Larisa Bykovskaya ◽  
Bowen Sa

The significance of the paper is confirmed by the need to replace petroleum motor fuels with fuels produced from alternative energy sources. Biofuels derived from various vegetable resources are considered as promising alternative fuels for diesel engines. These fuels offer significant advantages with respect to the renewability of their raw materials and good emission performances when burned in ICEs. The main problem of using vegetable oils as biofuels for diesel engines is their high viscosity. This problem can be resolved by using mixed biofuels with the addition of gasoline. The analysis of physico-chemical properties of petroleum diesel fuel (DF) and mixed biofuels containing petroleum DF, rapeseed oil (RO) and AI-80 automotive gasoline was conducted. Experimental studies of the D-245.12S diesel fuelled with these mixed fuels were carried out. The mixed fuels were prepared from 80% DF + 20% RO, from 75% DF + 20% RO + 5% AI-80, and from 70% DF + 20% RO + 10% AI-80. It was shown that the addition of gasoline to mixed biofuels could improve two main toxicity indicators of exhaust gases exhaust gases smoke and emissions of nitrogen oxides. The best emission performance was achieved for the mixture of 70% DF, 20% RO and 10% AI-80. When the diesel engine was switched from the mixture of 80% DF and 20% RO to the mixture of 70% DF, 20% RO and 10% AI-80, the exhaust gases smoke at maximum torque mode decreased from 17.5 to 14.5% on the Hartridge scale, i.e. by 17.1%. The specific emissions of nitrogen oxides decreased from 6.559 to 6.154 g/(kW·h), i.e. by 6.2%.


Author(s):  
S. Murugan ◽  
G. Nagarajan

Many alternative fuels have been introduced in the fuel market in the recent years. But, still there is a lot of research work going on around the world in the conversion of waste substances into useful energy. Some of the researchers show a remarkable interest in using pyrolysis oil as an alternative fuel for diesel engines. Tire pyrolysis oil (TPO) from waste automobile tires has been found to be an energy source. It could be blended with diesel fuel and used as an alternative fuel for diesel engines. But, it cannot be used as the sole fuel in diesel engines due to its poor ignition quality. Diethyl ether (DEE) is a good ignition improver having a cetane number of more than 125. In the present investigation, two different blends of Tire pyrolysis oil and DEE (with addition of DEE at 0.5 and 1%) were used in a single cylinder four stroke water cooled direct injection diesel engine developing a rated power of 3.7 kW at 1500 rpm. The engine was able to run with 100% Tire pyrolysis oil with a maximum DEE addition of 1%. Results indicated that nitric oxide emission reduced by about 4% with an 8% increase in smoke emission at full load when the engine was fueled with TPO and 1% of DEE compared to that of diesel fuel operation. The brake thermal efficiency of the engine fueled with TPO-DEE blends was found to be lesser than that of diesel operation at full load. Brake specific energy consumption was also found to be higher with TPO DEE blends compared to that of diesel fuel operation. The results of the performance and emissions of the DI diesel engine are presented in this paper.


2013 ◽  
Vol 734-737 ◽  
pp. 2386-2390 ◽  
Author(s):  
Tsun Lirng Yang ◽  
Cheng Wei Lin

In this study, the vertical single cylinder YANMAR YDG3700N diesel engine power generator is used to find out the physical changes external to the engine under different fuel consumption rates and loads. The fuels used are what a Class A fishing vessel uses, which is blended with four different fuel additives available on the market to compare the combustion of the fuels with the addition of the additives in an attempt to find out the effect on the engine. The result of the experiment shows measurable external physical properties of the engine and fuel consumption rates under the combustion with fuels added with different additives in different proportions under different loading: the changes in engine speed and temperature of the exhaust will serve as a reference for choosing different fuel additives in the market and for better understanding of the properties of the fuel additives.


Transport ◽  
2003 ◽  
Vol 18 (5) ◽  
pp. 202-208 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Stasys Slavinskas

One of the methods that allows substantially to reduce exhaust smoke of diesel engines and avoid possible damage of the environment by harmful emissions is the usage of multipurpose fuel additives. The efficiency of new Estonian made fuel additives SO-2E, that have been introduced recently for the experts attention, was investigated in small heating boilers and low-powered ships. The purpose of this research is to determine the influence of fuel additives SO-2E on the performance of a high-speed direct injection diesel engine in order to evaluate some of quantitative composition changes of the exhaust gases especially environmentally harmful nitrogen oxides, carbon monoxides and smoke emissions. Bench tests have been performed on the four-stroke, four-cylinder, water-cooled direct injection diesel engine D-243 with splash volume Vl = 4,75 dm3 and compression ratio ɛ = 16:1. Test results show that the application of diesel fuel additives SO-2E in proportion 1:500 (0,2 % by volume) at engine rated power reduces nitrogen monoxides NO and common NOx emission by 11,54 and 9,64 % respectively, however the amount of NO2 in totally diminished background of nitrogen oxides increases by 7,39 %. On the other hand, when running the engine at moderate (bmpe = 0,35 MPa) load, the fuel additives reduce emissions of all nitrogen components - NO by 16,1 %, NO2 by 11,8 % and NOx by 15,7 %. The influence of fuel additives on the amount of carbon monoxides in the exhausts seems to be more complicated. At engine rated speed/power fuel additives increase CO emission by 12,5 %, but as soon as engine load increases and revolution frequency drops down to the maximal torque area n = 1600-1800 min-1, they reduce the amount of CO in the exhaust gases on the average 20–28 %. It is important to notice that the changes in the smoke emission remain in close association with CO emissions. At certain revolution frequencies and moderate load the fuel additives SO-2E lead to noticeable reduction of the exhaust smoke, however at engine rated power and speed the smoke emission is obtained approximately 5 – 10 % higher. In spite of dissimilar influence of the fuel additives SO-2E on the quantities of CO produced and exhaust smoke it would be worth to apply them in high-speed DI diesel engines in order to reduce nitrogen oxides NOx emission.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3837
Author(s):  
Mohammad I. Jahirul ◽  
Farhad M. Hossain ◽  
Mohammad G. Rasul ◽  
Ashfaque Ahmed Chowdhury

Utilising pyrolysis as a waste tyre processing technology has various economic and social advantages, along with the fact that it is an effective conversion method. Despite extensive research and a notable likelihood of success, this technology has not yet seen implementation in industrial and commercial settings. In this review, over 100 recent publications are reviewed and summarised to give attention to the current state of global tyre waste management, pyrolysis technology, and plastic waste conversion into liquid fuel. The study also investigated the suitability of pyrolysis oil for use in diesel engines and provided the results on diesel engine performance and emission characteristics. Most studies show that discarded tyres can yield 40–60% liquid oil with a calorific value of more than 40 MJ/kg, indicating that they are appropriate for direct use as boiler and furnace fuel. It has a low cetane index, as well as high viscosity, density, and aromatic content. According to diesel engine performance and emission studies, the power output and combustion efficiency of tyre pyrolysis oil are equivalent to diesel fuel, but engine emissions (NOX, CO, CO, SOX, and HC) are significantly greater in most circumstances. These findings indicate that tyre pyrolysis oil is not suitable for direct use in commercial automobile engines, but it can be utilised as a fuel additive or combined with other fuels.


2015 ◽  
Vol 787 ◽  
pp. 751-755
Author(s):  
P. Vithya ◽  
V. Logesh

The use of fossil fuel is increasing drastically due to its consumption in all consumer activities. The utility of fossil fuel depleted its existence, degraded the environment and led to reduction in underground carbon resources. Hence the search for alternative fuels is paying attention for making sustainable development, energy conservation, efficiency and environmental preservation. The worldwide reduction of underground carbon resources can be substituted by the bio-fuels. The researchers around the world are finding the alternate fuel that should have the least impact on the environment degradation. This paper aims at finding an alternative for diesel and reducing the pressure on its existing demand. This study aimed at using two types of oil mixtures namely cashew nut shell oil and camphor oil mixed with diesel, turpentine oil mixed with diesel in different proportions as fuel in twin cylinder four stroke diesel engine. Performance and emission analysis have been performed by using exhaust gas analyzer in the oil samples. It was observed that 40% cashew nut shell oil and 10%camphor oil mixed with 50% diesel, 50% turpentine oil mixed with 50% diesel shows the better engine performance and also less emissions.


Sign in / Sign up

Export Citation Format

Share Document