Decomposition analysis of the decoupling process between economic growth and carbon emission in Beijing city, China: A sectoral perspective

2019 ◽  
Vol 31 (6) ◽  
pp. 961-982 ◽  
Author(s):  
Min Su ◽  
Shasha Wang ◽  
Rongrong Li ◽  
Ningning Guo

Cities play a major role in decoupling economic growth from carbon emission for their significant role in climate change mitigation from national level. This paper selects Beijing (economic center and leader of emission reduction in China) as a case to examine the decoupling process during the period 2000–2015 through a sectoral decomposition analysis. This paper proposes the decoupling of carbon emission from economic growth or sectoral output by defining the Tapio decoupling elasticity, and combined the decoupling elasticity with decomposition technique such as Logarithmic Mean Divisia Index approach. The results indicate that agriculture and industrial sectors presented strong decoupling state, and weak decoupling is detected in construction and other industrial sectors. Meanwhile, transport sector is in expansive negative decoupling while trade industry shows expansive coupling during the study period. Per-capita gross domestic product, industrial structure, and energy intensity are the most significant effects influencing the decoupling process. Agriculture and industry are conducive to decoupling of carbon emissions from economic output, while transport and trade are detrimental to the realization of strong decoupling target between 2000 and 2015. However, construction and other industrial sectors exerted relatively little minor impact on the whole decoupling process. Improving and promoting energy-saving technologies in transport sector and trade sector should be the key strategy adjustments for Beijing to reduce carbon emissions in the future. The study aims to provide effective policy adjustments for policy makers to accelerate the decoupling process in Beijing, which, furthermore, can lay a theoretical foundation for other cities to develop carbon emission mitigation polices more efficiently.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Guoxing Zhang ◽  
Mingxing Liu

Based on 2002–2010 comparable price input-output tables, this paper first calculates the carbon emissions of China’s industrial sectors with three components by input-output subsystems; next, we decompose the three components into effect of carbon emission intensity, effect of social technology, and effect of final demand separately by structure decomposition analysis; at last, we analyze the contribution of every effect to the total emissions by sectors, thus finding the key sectors and key factors which induce the changes of carbon emissions in China’s industrial sectors. Our results show that in the latest 8 years five departments have gotten the greatest increase in the changes of carbon emissions compare with other departments and the effect of final demand is the key factor leading to the increase of industrial total carbon emissions. The decomposed effects show a decrease in carbon emission due to the changes of carbon emission intensity between 2002 and 2010 compensated by an increase in carbon emissions caused by the rise in final demand of industrial sectors. And social technological changes on the reduction of carbon emissions did not play a very good effect and need further improvement.


Author(s):  
Jianli Sui ◽  
Wenqiang Lv

Modern agriculture contributes significantly to greenhouse gas emissions, and agriculture has become the second biggest source of carbon emissions in China. In this context, it is necessary for China to study the nexus of agricultural economic growth and carbon emissions. Taking Jilin province as an example, this paper applied the environmental Kuznets curve (EKC) hypothesis and a decoupling analysis to examine the relationship between crop production and agricultural carbon emissions during 2000–2018, and it further provided a decomposition analysis of the changes in agricultural carbon emissions using the log mean Divisia index (LMDI) method. The results were as follows: (1) Based on the results of CO2 EKC estimation, an N-shaped EKC was found; in particular, the upward trend in agricultural carbon emissions has not changed recently. (2) According to the results of the decoupling analysis, expansive coupling occurred for 9 years, which was followed by weak decoupling for 5 years, and strong decoupling and strong coupling occurred for 2 years each. There was no stable evolutionary path from coupling to decoupling, and this has remained true recently. (3) We used the LMDI method to decompose the driving factors of agricultural carbon emissions into four factors: the agricultural carbon emission intensity effect, structure effect, economic effect, and labor force effect. From a policymaking perspective, we integrated the results of both the EKC and the decoupling analysis and conducted a detailed decomposition analysis, focusing on several key time points. Agricultural economic growth was found to have played a significant role on many occasions in the increase in agricultural carbon emissions, while agricultural carbon emission intensity was important to the decline in agricultural carbon emissions. Specifically, the four factors’ driving direction in the context of agricultural carbon emissions was not stable. We also found that the change in agricultural carbon emissions was affected more by economic policy than by environmental policy. Finally, we put forward policy suggestions for low-carbon agricultural development in Jilin province.


2018 ◽  
Vol 10 (9) ◽  
pp. 3251 ◽  
Author(s):  
Xue-Ting Jiang ◽  
Min Su ◽  
Rongrong Li

Carbon emissions from China’s electricity sector account for about one-seventh of the global carbon dioxide emissions, or half of China’s carbon dioxide emissions. A better understanding of the relationship between CO2 emissions and electric output would help develop and adjust carbon emission mitigation strategies for China’s electricity sector. Thus, we applied the electricity elasticity of carbon emissions to a decoupling index that we combined with advanced multilevel Logarithmic Mean Divisia Index tools in order to test the carbon emission response to the electric output and the main drivers. Then, we proposed a comparative decoupling stability analysis method. The results show that the electric output effect played the most significant role in increasing CO2 emissions from China’s electric sector. Also, “relative decoupling” was the main state during the study period (1991–2012). Moreover, the electricity elasticity of CO2 emissions had a better performance regarding stability in the analysis of China’s electricity output.


2018 ◽  
Vol 29 (4) ◽  
pp. 543-555 ◽  
Author(s):  
Ming-Ming Zhao ◽  
Rongrong Li

South China’s Guangdong Province, the Chinese largest provincial economy and the global 14th biggest economy, has been facing a huge challenge of achieving economic growth without emission growth. Developing new strategy for making economic growth compatible carbon reduction requires better understanding of the decoupling carbon emission from economic growth. In this paper, we conduct a comprehensive decoupling and decomposition analysis of carbon emission from economic output in Guangdong Province from a sector perspective. We firstly calculate carbon emission in six sectors based on the energy consumption of each sector and carbon coefficient of 13 types of fuels during 2000–2014, and then quantify the decoupling status between CO2 emissions and economic growth in those six sectors by using the Tapio decoupling index, finally, investigate the influencing factors of emissions by using the decomposition techniques. The modeling results show that agricultural sector has strong decoupling, industrial, transport and others sectors are weak decoupling; construction and trade sectors are expansive negative decoupling. We also find that energy intensity and economic output are the major factors influencing carbon emission, also the effects of energy structure and emission factor among six sectors are studied. Some policy recommendations finally are put forward.


Author(s):  
Qiang Wang ◽  
Shasha Wang ◽  
Rongrong Li

Quantitative analysis on decoupling between economic output, carbon emission, and the driving factors behind decoupling states can serve to make the economy grow without increasing carbon emission in China’s transport sector. In this work, we investigate the decoupling states and driving factors of decoupling states in the transport sector of China’s four municipalities (Beijing, Shanghai, Tianjin, and Chongqing) through combining the Tapio decoupling approach with the decomposition technique. The results show that (i) the decoupling state of Beijing, Shanghai, and Tianjin improved; Beijing stabilized in weak decoupling; Shanghai and Tianjin appeared to have strong decoupling, but the decoupling state of Chongqing deteriorated from decoupling to negative decoupling. (ii) The energy-saving effect was the primary contributor to decoupling in these four municipalities, promoting transport’s economic growth strongly decouple from carbon emission. The economic scale effect was not optimized enough in Chongqing, facilitating expansive coupling, and expansive negative decoupling emerged. But it had a rather positive impact on decoupling process in Beijing, Shanghai and Tianjin, promoting economic growth to weakly decouple from carbon emission. (iii) The carbon-reduction effect promoted strong decoupling, which emerged in Shanghai’s transport sector, more so than in the other three municipalities, in which weak decoupling emerged. Finally, several relevant policy recommendations were offered to promote the decoupling of carbon emission from economic growth and low-carbon transport.


2016 ◽  
Vol 29 (2) ◽  
pp. 137-153 ◽  
Author(s):  
Jayanthi Kumarasiri ◽  
Christine Jubb

Purpose The purpose of this paper is to apply regulatory mix theory as a framework for investigating the use of management accounting techniques by Australian large listed companies in constraining their carbon emissions. Design/methodology/approach Semi-structured interviews are conducted with senior managers involved with managing their companies’ carbon emission risks. Analysis of the interview data is undertaken with a view to provision of insight to the impact of the regulatory framework imposed to deal with carbon emissions. Findings The findings reveal that regulation impacting companies’ economic interests rather than requiring mere disclosure compliance is much more likely to be behind focusing top management and board attention and use of management accounting techniques to set targets, measure performance and incentivise emission mitigation. However, there remains much scope for increased use of accounting professionals and accounting techniques in working towards a carbon-constrained economy. Research limitations/implications The usual limitations associated with interpretation of interview data are applicable. Practical implications Under-use of management accounting techniques is likely to be associated with less than optimal constraint of carbon emissions. Social implications Carbon emissions are accepted as being involved in harmful climate change. To the extent effective techniques are under-utilised in constraining emissions, harmful consequences for society are likely to be heightened unnecessarily. Originality/value The topic and data collected are original and provide valuable insights into the dynamics of management accounting technique use in managing carbon emissions.


2013 ◽  
Vol 869-870 ◽  
pp. 746-749
Author(s):  
Tian Tian Jin ◽  
Jin Suo Zhang

Abstract. Based on ARDL model, this paper discussed the relationship of energy consumption, carbon emission and economic growth.The results indicated that the key to reduce carbon emissions lies in reducing energy consumption, optimizing energy structure.


2019 ◽  
Vol 11 (17) ◽  
pp. 4531 ◽  
Author(s):  
Li Wang ◽  
Jie Pei ◽  
Jing Geng ◽  
Zheng Niu

China has been a leader in global carbon emissions since 2006. The question of how to reduce emissions while maintaining stable economic growth is a serious challenge for the country. To achieve this, it is of great significance to track the spatial and temporal evolution of carbon emissions in China during recent decades, which can provide evidence-based scientific guidance for developing mitigation policies. In this study, we calculated the carbon emissions of land use in 1999–2015 using the carbon emissions factor method proposed by the Intergovernmental Panel on Climate Change (IPCC). The Kuznets curve model was used to explore the influence of economic growth and urbanization on carbon emissions at the national and provincial levels. The results indicated that (1) China’s emissions increased from 927.88 million tons (Mt) in 1999 to 2833.91 Mt in 2015 at an average annual growth rate of 12.94%, while carbon sinks grew slightly, from 187.58 Mt to 207.19 Mt. Both emissions and sinks presented significant regional differences, with the Central and Southwest regions acting as the biggest emissions and sink contributors, respectively. (2) Built-up land was the largest land carrier for carbon emissions in China, contributing over 85% to total emissions each year; and (3) at the national level, the relationships between economic growth, urbanization, and carbon emissions presented as inverted U-shaped Kuznets curves, which were also found in the majority of the 30 studied provinces. While carbon emissions may be reaching a peak in China, given the disproportionate role of built-up land in carbon emissions, efforts should be devoted to limiting urbanization and the production of associated carbon emissions.


2019 ◽  
Vol 11 (24) ◽  
pp. 7008
Author(s):  
Sheng-Wen Tseng

Inner Mongolia has shown both rapid economic growth and a large renewable energy base, this has come about by the introduction of the “Western Development” strategy and renewable energy policy of the Chinese Government. However, this has led to a contradictory situation where both high carbon emission and reduction exist together. The average economic growth of Inner Mongolia reached 15.76% between 2006 and 2016, which caused huge CO2 emissions. However, promotion of the renewable energy policy (since 2005) resulted in an energy self-sufficiency rate that reached 270.80% by 2016. In this study of the Inner Mongolia carbon emission situation, the logarithmic mean divisia index (LMDI) model was used to analyze the factors affecting carbon emission fluctuations from 2005 to 2016. The decoupling elasticity index was then used to measure the decoupling effect of the economic growth and carbon emissions. The results of this research show that: firstly, CO2 emissions increased rapidly from 651.03 million tons in 2006 to 1723.24 million tons in 2013. Despite a slight decline in CO2 emissions, a level above 1600 million tons was maintained between 2014 and 2016. Secondly, the industry sector was the main source of CO2 emissions in Inner Mongolia, and coal-based fuel played a determining role. Thirdly, in this study, two important contributions were made, including the discovery of two new drivers: labor and emission intensity factors. Further, findings about the effect of the six industrial sectors, economic structure, energy density, and emission intensity factors were also decomposed. It was found that during research period, the population factor, labor factor, and labor productivity factor all had a positive influence on CO2 emissions, whereas the economic structure factor and emission intensity factor had different impacts on the CO2 emissions depending on the particular industrial sector. Furthermore, the energy intensity of six industrial sectors contributed to the decrease in aggregate CO2 emissions. Finally, in this study, it was also found that economic growth and CO2 growth in Inner Mongolia presented a weak decoupling state. Policy recommendations based on these results have been presented.


2019 ◽  
Vol 11 (3) ◽  
pp. 914 ◽  
Author(s):  
Jianguo Zhou ◽  
Yushuo Li ◽  
Xuejing Huo ◽  
Xiaolei Xu

With the official launch of China’s national unified carbon trading system (ETS) in 2017, it has played an increasingly important role in controlling the growth of carbon dioxide emissions. One of the core issues in carbon trading is the allocation of initial carbon emissions permits. Since the industry emits the largest amount of carbon dioxide in China, a study on the allocation of carbon emission permits among China’s industrial sectors is necessary to promote industry carbon abatement efficiency. In this study, industrial carbon emissions permits are allocated to 37 sub-sectors of China to reach the emission reduction target of 2030 considering the carbon marginal abatement cost, carbon abatement responsibility, carbon abatement potential, and carbon abatement capacity. A hybrid approach that integrates data envelop analysis (DEA), the analytic hierarchy process (AHP), and principal component analysis (PCA) is proposed to allocate carbon emission permits. The results of this study are as follows: First, under the constraint of carbon intensity, the carbon emission permits of the total industry in 2030 will be 8792 Mt with an average growth rate of 3.27%, which is 1.57 times higher than that in 2016. Second, the results of the carbon marginal abatement costs show that light industrial sectors and high-tech industrial sectors have a higher abatement cost, while energy-intensive heavy chemical industries have a lower abatement cost. Third, based on the allocation results, there are six industrial sub-sectors that have obtained major carbon emission permits, including the smelting and pressing of ferrous metals (S24), manufacturing of raw chemical materials and chemical products (S18), manufacturing of non-metallic mineral products (S23), smelting and pressing of non-ferrous metals (S25), production and supply of electric power and heat power (S35), and the processing of petroleum, coking, and processing of nuclear fuel (S19), accounting for 69.23% of the total carbon emissions permits. Furthermore, the study also classifies 37 industrial sectors to explore the emission reduction paths, and proposes corresponding policy recommendations for different categories.


Sign in / Sign up

Export Citation Format

Share Document