Impact of public R&D as market matures: Evidence from solar PV industry

2020 ◽  
pp. 0958305X2098158
Author(s):  
Hanee Ryu ◽  
Hyejae Jung

Our study concentrates on the impact of public research and development (R&D) as solar PV market matures. This paper tried to distinguish the concepts of market maturity and technology maturity and to approach them measurably. Considering the concept of cost reduction rate and number of patent change rate, we estimates maturity indicator respectively. Next, we estimate how market and technology maturity interact with public R&D. Finally, we examine whether the R&D effect varies depending on market maturity. This study suggests the implications of the R&D policy of renewable energy technologies at various maturity levels by making the concept of market maturity which is commonly used and measuring the R&D effect according to market maturity.

Author(s):  
Jarod C. Kelly ◽  
Deepak Sivaraman ◽  
Gregory A. Keoleian

Many studies that examine the impact of renewable energy installations on avoided carbon-dioxide utilize national, regional or state averages to determine the predicted carbon-dioxide offset. The approach of this computational study was to implement a dispatching strategy in order to determine precisely which electrical facilities would be avoided due to the installation of renewable energy technologies. This study focused on a single geographic location for renewable technology installation, San Antonio, Texas. The results indicate an important difference between calculating avoided carbon-dioxide when using simple average rates of carbon-dioxide emissions and a dispatching strategy that accounts for the specific electrical plants used to meet electrical demands. The avoided carbon-dioxide due to renewable energy technologies is overestimated when using national, regional and state averages. This occurs because these averages include the carbon-dioxide emission factors of electrical generating assets that are not likely to be displaced by the renewable technology installation. The study also provides a comparison of two specific renewable energy technologies: photovoltaics (PV) and wind turbines. The results suggest that investment in PV is more cost effective for the San Antonio location. While the results are only applicable to this location, the methodology is useful for evaluating renewable technologies at any location.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Wallace Matizamhuka

Magnetic materials specifically permanent magnets are critical for the efficient performance of many renewable energy technologies. The increased reliance on renewable energy sources has accelerated research in energy-related technologies the world over. The use of rare-earth (RE) metals in permanent magnets continues to be a source of greater concern owing to the limited RE supply coupled with dwindling reserves on the globe. This review focuses on how this has impacted on the state-of-the-art magnetic materials that continue to play a pivotal role in driving renewable energy technologies. Magnetic materials are perceived as key in driving the 21st century industrial revolution, and the participation of South Africa in this energy paradigm is critical in driving a new industrial revolution within the African continent. A number of opportunities are highlighted, and clarity is given on the several ubiquitous misconceptions and the risks on the heavy reliance on a single source for RE magnetic materials.


2020 ◽  
Vol 15 (3) ◽  
pp. 393-401
Author(s):  
Ram Chandra Khanal ◽  
Shree Raj Shakya ◽  
Tri Ratna Bajracharya

Renewable energy can contribute to adaptation to climate change, mitigation and development and may play an important role in resilient development ambition of Nepal. It has been emphasized in Nepal's Nationally Determined Contribution (NDC) and climate change policy but its potential impact on SDGs era has not been fully explored and implemented. The study used employed energy system modelling by using optimization software, reviewed literature and interacted with various experts. It has been found that renewable energy technologies (RETs) provide socio-economic and environmental benefits to people that contribute to adopting and ensuring a better adaptation to climate change based on the local context. They contribute to adaptation processes by contributing to reducing the vulnerability of people, improving adaptive capacity, and minimizing climate change risk in line with SDG 7. But these are not without challenges either. Financial, technical, institutional, policy and legal issues are major challenges to promote RETs. This study shows that theoretically altogether 4.45 million tons of CO2e of the GHG emission can be mitigated per year if all the remaining technical potential of deploying seven major RETs consisting of biogas, improved water mill, stand-alone micro-hydro plants, mini-grid micro-hydro plants, solar PV home systems, mud-ICS and metal-ICS were installed after 2012. Considering the average annual installation of these RETs, altogether 30.71 million tons of CO2e can be mitigated between the periods of 2013 to 2030 at an annual additional installation equal to average installation done in recent past three years. The initial technology investment required for implementing the above mentioned RETs ranges from NRs 97 to NRs 23,247 per ton of CO2e mitigation. This indicates that though a moderate level of the initial investment is required for promoting RETs, the GHG mitigation potential seems to be quite promising. There is no liberty of inaction, so RETs can be a good case for a triple win strategy to address mitigation – adaptation – development nexus for climate compatible development in Nepal.


Environments ◽  
2019 ◽  
Vol 6 (8) ◽  
pp. 95 ◽  
Author(s):  
Eliud Kiprop ◽  
Kenichi Matsui ◽  
Nicholas Maundu

In transition to a low-carbon economy, the adoption of renewable energy (RE) technologies by energy investors, power utilities and energy consumers is critical. In developing countries like Kenya with a high rate of urbanization, this transition requires urban and rural residents’ proactive responses to using renewable energy sources. In this regard, a better understanding of residents’ perceptions about renewable energy investment, RE sources availability, climate change, environmental conservation and other factors can lead to more efficient and sustainable implementation of renewable energy policies. This study investigates the role Kenya’s household energy consumers in urban and rural areas can play in adopting renewable energy technologies. To achieve this, a questionnaire survey was administered among 250 household consumers in Nairobi County, Makueni County, and Uasin Gishu County. Our survey analysis shows that about 84% of the respondents were interested in adopting renewable energy for their entire energy consumption mostly because of solving frequent power outages and high energy cost from the grid system. This perception did not have any correlations with income levels or any other socio-economic factors we identified. Furthermore, about 72% of the respondents showed their interests in producing and selling renewable energy to the national or local grids if government subsidies were readily available. Rural residents showed strong interests in adopting renewable energy technologies, especially solar PV solutions. However, the main impediment to their investment in renewable energy was the high cost of equipment (49%) and the intermittent nature of renewable energy (27%) resources.


2018 ◽  
Vol 20 (4) ◽  
pp. 553-587 ◽  
Author(s):  
Bjarne Steffen ◽  
Tyeler Matsuo ◽  
Davita Steinemann ◽  
Tobias S. Schmidt

AbstractAs renewable energy supply chains have grown increasingly globalized, national clean energy transitions have become highly influenced by international dynamics. However, these dynamics are themselves collectively shaped by domestic policy that drives the deployment of renewables. While spatial spillovers of domestic renewable energy policies have been studied on an aggregate level regarding policy diffusion or the flows of technology across countries, implications on an actor-level have been largely neglected. This article addresses this gap by analyzing global patterns of market openings for wind, solar PV, and biomass, focusing on the role of private project developers in developing countries. We use a mixed method design, based on a newly merged dataset encompassing eighty countries, and on interviews with pioneering project developers. Results highlight how patterns in market openings are shaped considerably by technology characteristics. Further, empirical results show international private developers are a key first mover in many developing countries. We explore drivers for this internationalization trend, including the impact of international developers' home country policies and the accumulation of tacit knowledge from home country markets for market openings abroad. Finally, we discuss implications for industrial policy and argue for further research on global spillovers of national policies on the actor-level.


2013 ◽  
Vol 56 (04) ◽  
pp. 103-111 ◽  
Author(s):  
Tanya Christidis ◽  
Claire Paller ◽  
Shannon Majowicz ◽  
Phil Bigelow ◽  
Ashley Wilson ◽  
...  

With the increasing concerns regarding fossil fuels and nuclear energy, greater attention is being placed on alternate renewable energy technologies (RETs) such as wind, solar, and bioenergy. However, implementation of modern RETs has become controversial, as adverse health effects are a major concern. Although local case studies have suggested a relationship between wind turbines and health, there is a gap in the scientific knowledge. Epidemiological studies with adequate data collection tools and analyses are needed, particularly in the Canadian context. We reviewed surveys used in relevant environmental health literature, created a data collection tool for use in populations exposed to wind turbines, and piloted the survey content and distribution method. Our pilot response rate was 25.5% (45/200). The mean age of survey respondents was 57.6 years (SD: 12.76) with 57% of the respondents being female; respondents were not significantly different than the target population with respect to age or sex. The survey and methods presented here can be used in future studies to assess the health impacts of renewable energy technologies.


Sign in / Sign up

Export Citation Format

Share Document