Position and attitude tracking of uncertain quadrotor unmanned aerial vehicles based on non-singular terminal super-twisting algorithm

Author(s):  
Walid Alqaisi ◽  
Yassine Kali ◽  
Jawhar Ghommam ◽  
Maarouf Saad ◽  
Vahé Nerguizian

This paper proposes an improved non-singular terminal super-twisting control for the problem of position and attitude tracking of quadrotor systems suffering from uncertainties and disturbances. The super-twisting algorithm is a second-order sliding mode known to be a very effective control used to provide high precision and less chattering for uncertain nonlinear electromechanical systems. The proposed method is based on a non-singular terminal sliding surface with new exponent that solves the problem of singularity. The design procedure and the stability analysis of the closed-loop system using Lyapunov theory are detailed for the considered system. Finally, the proposed control scheme is tested in simulations and by experiments on the parrot-rolling spider quadrotor. Moreover, a comparison is made with the standard super-twisting algorithm in the simulation part. The results obtained show adequate performance in trajectory tracking and chattering reduction.

2021 ◽  
Vol 11 (12) ◽  
pp. 5331
Author(s):  
Wenlong Zhao ◽  
Zhijun Meng ◽  
Kaipeng Wang ◽  
Haoyu Zhang

A helicopter is a highly nonlinear system. Its mathematical model is difficult to establish accurately, especially the complicated flapping dynamics. In addition, the forces and moments exerted on the fuselage are very vulnerable to external disturbances like wind gust when flying in the outdoor environment. This paper proposes a composite control scheme which consists of a nonlinear backstepping controller and an extended state observer (ESO) to handle the above problems. The stability of the closed-loop system can be guaranteed based on Lyapunov theory. The external disturbances and model nonlinearities are treated as a lumped disturbance. Meanwhile, the ESO is employed to compensate the influence by estimating the lumped disturbance in real-time. Numerical simulation results are presented to demonstrate that the algorithm can achieve accurate and agile attitude tracking under the external wind gust disturbances even with model uncertainties. When coming to the flight test, a block dropping device was designed to generate a quantifiable and replicable disturbance, and the experimental results indicate that the algorithm introduced above can reject the external disturbance rapidly and track the given attitude command precisely.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1951
Author(s):  
Shun-Hung Tsai ◽  
Yi-Ping Chang ◽  
Hung-Yi Lin ◽  
Luh-Maan Chang

A robust trajectory tracking control scheme for quadrotor unmanned aircraft vehicles under uncertainties is proposed herein. A tracking controller combined with the sliding mode and integral backstepping is performed for position and attitude tracking. The stability of the trajectory tracking controller of the quadrotor is investigated via Lyapunov stability analysis. By incorporating force and torque disturbances into numerical simulations, the results demonstrate the effectiveness of the proposed quadrotor trajectory controller. Finally, the experiments validate the feasibility of the proposed controller.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Li Ding ◽  
Qing He ◽  
Chengjun Wang ◽  
Rongzhi Qi

In this article, an attitude tracking controller is designed for a quadrotor unmanned aerial vehicle (UAV) subject to lumped disturbances. Firstly, the attitude dynamical model of the quadrotor under external disturbances is established. Subsequently, an improved sliding mode control (SMC) strategy is designed based on the linear extended state observer (LESO). In this control scheme, the SMC will guarantee the sliding surface is finite time reachable and the LESO will estimate and compensate for the lumped disturbances. Then, the robustness and asymptotic stability of the proposed controller are proved by the stability analyses. Finally, three numerical simulation cases and comparative flight experiments validate the effectiveness of the developed controller.


Robotica ◽  
2020 ◽  
pp. 1-19
Author(s):  
Abraham Villanueva ◽  
Luis F. Luque-Vega ◽  
Luis E. González-Jiménez ◽  
Carlos A. Arellano-Muro

SUMMARY This work presents a multimode flight framework control scheme for a quadrotor based on the super twisting algorithm. The controller design stages for six flight control modes are presented. The stability proof for each flight mode is carried out by means of Lyapunov functions, while the stability analysis for the complete control scheme, when a transition from one flight mode to another occurs, is demonstrated using the switching nonlinear systems theory. The performance of the proposed framework is shown in a 3D simulation environment considering a forest fire detection task, which takes into account external disturbances.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6041
Author(s):  
Fredy A. Valenzuela ◽  
Reymundo Ramírez ◽  
Fermín Martínez ◽  
Onofre A. Morfín ◽  
Carlos E. Castañeda

A DC motor velocity control in feedback systems usually requires a velocity sensor, which increases the controller cost. Additionally, the velocity sensor used in industrial applications presents several disadvantages such as maintenance requirements and signal conditioning. In this work, we propose a robust velocity control scheme applied to a DC motor based on estimation strategies using a sliding-mode observer. This means that measurements with mechanical sensors are not required in the controller design. The proposed observer estimates the rotational velocity and load torque of the motor. The controller design applies the exact-linearization technique combined with the super-twisting algorithm to achieve robust performance in the closed-loop system. The controller validation was carried out by experimental tests using a workbench, which is composed of a control and data acquisition Digital Signal Proccessor board, a DC-DC electronic converter, an interface board for signals conditioning, and a DC electric generator connected to an adjustable resistive load. The simulation and experimental results show a significant performance of the proposed control scheme. During tests, the accuracy, robustness, and speed response on the controller were evaluated and the experimental results were compared with a classic proportional-integral controller, which uses a conventional encoder.


2014 ◽  
Vol 631-632 ◽  
pp. 710-713 ◽  
Author(s):  
Xian Yong Wu ◽  
Hao Wu ◽  
Hao Gong

Anti-synchronization of two different chaotic systems is investigated. On the basis of Lyapunov theory, adaptive control scheme is proposed when system parameters are unknown, sufficient conditions for the stability of the error dynamics are derived, where the controllers are designed using the sum of the state variables in chaotic systems. Numerical simulations are performed for the Chen and Lu systems to demonstrate the effectiveness of the proposed control strategy.


Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


2014 ◽  
Vol 635-637 ◽  
pp. 1199-1202 ◽  
Author(s):  
Zheng Gao Hu ◽  
Guo Rong Zhao ◽  
Da Wang Zhou

For the chattering problem in the traditional sliding mode observer-based fault estimation, a second order sliding mode observer based on the Super-twisting algorithm was proposed. In order to avoid the cumbersome process of proving the stability of the Super-twisting algorithm, a Lyapunov function was adopted. An active fault tolerant control law was designed based on the fault estimation. Finally, simulation show the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document