Timing of the Indian Summer Monsoon onset during the early Holocene: Evidence from a sediment core at Linggo Co, central Tibetan Plateau

The Holocene ◽  
2017 ◽  
Vol 28 (5) ◽  
pp. 755-766 ◽  
Author(s):  
Yue He ◽  
Juzhi Hou ◽  
Erik T Brown ◽  
Shuyun Xie ◽  
Zhengyu Bao

The spatial and temporal variability, effects, and mechanisms of the Indian Summer Monsoon (ISM) have been investigated intensively during the past few decades. The pattern of a relatively strong ISM during the early to middle Holocene, and a relatively weak ISM in the late Holocene, has been widely demonstrated in both marine and continental records. However, the timing of the ISM onset during the early Holocene remains controversial. Here, we present oxygen isotope record from ostracods and hydrogen isotope record from sedimentary leaf waxes from a sediment core at Linggo Co, a glacier-fed lake on the central Tibetan Plateau, in order to investigate the onset of the ISM. The ostracod δ18O record indicates an early ISM onset at ~11.7 ka, whereas the leaf wax δD record indicates a later ISM onset at ~10 ka. This apparent two-step development of the ISM revealed by aquatic and terrestrial records is confirmed by principal component analysis of nine marine records from the ISM domain. The comparison between isotope records from Linggo Co and the marine records implies that the early ISM onset was likely linked to elevated temperatures in the Northern Hemisphere, while the later ISM onset may be related to intensified precipitation.

2019 ◽  
Vol 64 (20) ◽  
pp. 1482-1485 ◽  
Author(s):  
Xiangjun Liu ◽  
Xiaojian Zhang ◽  
Yanluan Lin ◽  
Liya Jin ◽  
Fahu Chen

2021 ◽  
pp. 1-54

Abstract It has been suggested that summer rainfall over Central Asia (CA) is significantly correlated with the summer thermal distribution of the Tibetan Plateau (TP) and the Indian summer monsoon (ISM). However, relatively few studies have investigated their synergistic effects of different distribution. This study documents the significant correlations between precipitation in CA and the diabatic heating of TP and the ISM based on the results of statistical analysis and numerical simulation. Precipitation in CA is is dominated by two water vapor transport branches from the south which are related to the two primary modes of anomalous diabatic heating distribution related to the TP and ISM precipitation, that is, the “+-” dipole mode in the southeastern TP and the Indian subcontinent (IS), and the “+-+” tripole mode in the southeastern TP, the IS, and southern India. Both modes exhibit obvious mid-latitude Silk Road pattern (SRP) wave trains with cyclone anomalies over CA, but with different transient and stationary eddies over south Asia. The different locations of anomalous anticyclones over India govern two water vapor transport branches to CA, which are from the Arabian Sea and the Bay of Bengal. The water vapor flux climbs while being transported northward and can be transported to CA with the cooperation of cyclonic circulation. The convergent water vapor and ascending motion caused by cyclonic anomalies favor the precipitation in CA. Further analysis corroborates the negative South Indian Ocean Dipole (NSIOD) in February could affect the tripole mode distribution of TP heating and ISM via the atmospheric circulation, water vapor transport and an anomalous Hadley cell circulation. The results indicate a reliable prediction reference for precipitation in CA.


2019 ◽  
Vol 19 (2) ◽  
pp. 1373-1391 ◽  
Author(s):  
Huiming Lin ◽  
Yindong Tong ◽  
Xiufeng Yin ◽  
Qianggong Zhang ◽  
Hui Zhang ◽  
...  

Abstract. Located in the world's “third pole” and a remote region connecting the Indian plate and the Eurasian plate, Qomolangma National Nature Preserve (QNNP) is an ideal region to study the long-range transport of atmospheric pollutants. In this study, gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) were continuously measured during the Indian monsoon transition period in QNNP. A slight increase in the GEM concentration was observed from the period preceding the Indian summer monsoon (1.31±0.42 ng m−3) to the Indian summer monsoon period (1.44±0.36 ng m−3), while significant decreases were observed in the GOM and PBM concentrations, with concentrations decreasing from 35.2±18.6 to 19.3±10.9 pg m−3 (p < 0.001) for GOM and from 30.5±12.5 to 24.9±19.8 pg m−3 (p < 0.001) for PBM. A unique daily pattern was observed in QNNP with respect to the GEM concentration, with a peak value before sunrise and a low value at noon. Relative to the (low) GEM concentrations, GOM concentrations (with a mean value of 21.4±13.4 pg m−3, n=1239) in this region were relatively high compared with the measured values in some other regions of China. A cluster analysis indicated that the air masses transported to QNNP changed significantly at different stages of the monsoon, and the major potential mercury (Hg) sources shifted from northern India and western Nepal to eastern Nepal and Bangladesh. As there is a large area covered in glaciers in QNNP, local glacier winds could increase the transboundary transport of pollutants and transport polluted air masses to the Tibetan Plateau. The atmospheric Hg concentration in QNNP in the Indian summer monsoon period was influenced by transboundary Hg flows. This highlights the need for a more specific identification of Hg sources impacting QNNP and underscores the importance of international cooperation regarding global Hg controls.


2013 ◽  
Vol 9 (6) ◽  
pp. 2451-2458 ◽  
Author(s):  
J. Duan ◽  
L. Wang ◽  
L. Li ◽  
Y. Sun

Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1868–2007. The reconstructed MB is characterized mainly by ablation over the past 140 yr, and typical melting periods occurred in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) were characterized by accumulation. These variations can be validated by the terminus retreat velocity of Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August–September all-India monsoon rainfall (AIR) (r1871-2008 = −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation does not affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.


The Holocene ◽  
2015 ◽  
Vol 26 (4) ◽  
pp. 556-566 ◽  
Author(s):  
Chuanfang Jin ◽  
Franziska Günther ◽  
Shijie Li ◽  
Guodong Jia ◽  
Ping’an Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document