scholarly journals Inconsistency between records of δ18O and trace element ratios from stalagmites: Evidence for increasing mid–late Holocene moisture in arid central Asia

The Holocene ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 369-379 ◽  
Author(s):  
Xiaokang Liu ◽  
Jianbao Liu ◽  
Chuan-Chou Shen ◽  
Yan Yang ◽  
Jianhui Chen ◽  
...  

The interpretation of trace element/calcium ratios of speleothems as indicators of local hydroclimatic variability in the vicinity of caves has led to controversy in reconstructing the evolution of moisture conditions in arid central Asia (ACA) during the Holocene. Here we present records of Mg/Ca, Sr/Ca, Ba/Ca, and U/Ca from precisely dated stalagmites from Baluk cave in Xinjiang (northwest China), spanning the past 9370 years. The co-variations of the trace element ratios, together with the slopes of the regression lines of the corresponding logarithmically transformed data, suggest that they are dominated by prior calcite precipitation (PCP) and thus can be used as reliable proxies of changes in moisture/precipitation. The trace element ratios are relatively high during ~9 to 5 ka and lower from 5 ka to the present, indicating a trend of increasing mid–late Holocene moisture in ACA. The long-term trend of variation of the trace element ratios is correlative with two other records of speleothem trace element ratios from caves in ACA: Kesang cave (western Xinjiang) and Ton cave (Uzbekistan). This spatial coherency of the trend of inferred moisture conditions from three caves that are separated by hundreds of kilometers demonstrates that speleothem trace element ratios are indicative of large spatial scale rather than local hydroclimatic variability in ACA during the Holocene. However, the long-term trend of variation of the trace element ratios is the inverse of the corresponding oxygen isotope (δ18O) records from the same cave sites, which implies that Holocene speleothem δ18O records do not represent changes in the precipitation amount in ACA; rather, they most likely reflect moisture sources and related water vapor transport controlled by Northern Hemisphere summer insolation (NHSI). Our findings provide new evidence for a ‘westerlies-dominated climatic regime’, which influenced hydroclimatic changes in ACA during the Holocene.

2006 ◽  
Vol 51 (2) ◽  
pp. 221-228 ◽  
Author(s):  
Xiaohua Shao ◽  
Yongjin Wang ◽  
Hai Cheng ◽  
Xinggong Kong ◽  
Jiangying Wu ◽  
...  

Author(s):  
Albert E. Beaton ◽  
James R. Chromy
Keyword(s):  

2021 ◽  
Vol 38 (10) ◽  
pp. 1791-1802
Author(s):  
Peiyan Chen ◽  
Hui Yu ◽  
Kevin K. W. Cheung ◽  
Jiajie Xin ◽  
Yi Lu

AbstractA dataset entitled “A potential risk index dataset for landfalling tropical cyclones over the Chinese mainland” (PRITC dataset V1.0) is described in this paper, as are some basic statistical analyses. Estimating the severity of the impacts of tropical cyclones (TCs) that make landfall on the Chinese mainland based on observations from 1401 meteorological stations was proposed in a previous study, including an index combining TC-induced precipitation and wind (IPWT) and further information, such as the corresponding category level (CAT_IPWT), an index of TC-induced wind (IWT), and an index of TC-induced precipitation (IPT). The current version of the dataset includes TCs that made landfall from 1949–2018; the dataset will be extended each year. Long-term trend analyses demonstrate that the severity of the TC impacts on the Chinese mainland have increased, as embodied by the annual mean IPWT values, and increases in TCinduced precipitation are the main contributor to this increase. TC Winnie (1997) and TC Bilis (2006) were the two TCs with the highest IPWT and IPT values, respectively. The PRITC V1.0 dataset was developed based on the China Meteorological Administration’s tropical cyclone database and can serve as a bridge between TC hazards and their social and economic impacts.


Sign in / Sign up

Export Citation Format

Share Document