Hormesis, resveratrol and plant-derived polyphenols: some comments

2011 ◽  
Vol 30 (12) ◽  
pp. 2027-2030 ◽  
Author(s):  
Salvatore Chirumbolo

Hormesis is a dose–response phenomenon, usually present in plants and animals, characterized by a low-dose stimulation and high-dose inhibition, often resulting in typical U-shaped or J-shaped curves. Hormesis has become an interesting model for toxicology and risk assessment, as it has been described for several nature-derived phytochemicals but also because this adaptive response to stressors might hide an underlying more general behaviour of cell towards low doses.

Author(s):  
Luca Giannoni ◽  
Marino Mazzini

The risk assessment for population’s exposures to low doses and low dose-rates of ionizing radiation is still subject to clear uncertainties. The issue has outstanding societal importance in relation to radiologic occupational safety, medical applications of radiation, effects of the natural background radioactivity and the future of nuclear power, due to its particular influence on the public acceptance of this form of energy. This review article analyzes, in a critical, historical and bibliographical manner, the worldwide accepted hypothesis of linearity without a threshold dose (LNT model). As well known, it rejects, from its first proposal in 1946 by American geneticist and Nobel laureate Hermann J. Muller, the concept of zero-risk for exposures to any dose level of ionizing radiation. The starting point is the dose-effects relationship provided by this model and related risk’s excess graphic curve. The biological and physical motivations for the linearity assumption are argued and challenged by the explanation of human body’s natural defense mechanisms and its repair capacity of the radiation damage. Furthermore, the historical and political truthfulness of the LNT model is also contested by the review of a recent investigation by Prof. Edward Calabrese, regarding the lack of scientific sources behind Muller’s Nobel Prize Lecture. Calabrese’s inquiry demonstrates that Muller, at the moment of his declaration on LNT model’s validity, had experimental proofs contradicting his conclusions about the unacceptability of a threshold dose. This finding is of historical importance since Muller’s Nobel Lecture is a turning point in the acceptance of the linearity model in risk assessment by the major regulatory agencies till today. Finally, the results of many epidemiological and statistical studies are shown specifically. They give further evidences concerning the inapplicability of the LNT model and its overestimation of the risk for various cases of exposures to low doses of ionizing radiation in different fields. By that, hormesis model is also discussed, with its assumption of possible benefits for the organism following low dose exposures: a dose-response model characterized by low-dose stimulation and high-dose inhibition, which has been frequently observed in the aforementioned studies. The argumentations and the experimental evidences provided here challenge the validity of the LNT model. We contest the fact that its establishment is principally based on a cautionary philosophy on nuclear public safety, rather than on actual scientific comprehension of the phenomenon. As such, it implies an exaggerated conception of the radiological hazard. In particular, this article calls attention to the need for a deeper understanding of the biological impact of low doses of ionizing radiation and the development of further specific and exhaustive researches.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582091960 ◽  
Author(s):  
Jürg A. Zarn ◽  
Ursina A. Zürcher ◽  
H. Christoph Geiser

To derive reference points (RPs) for health-based guidance values, the benchmark dose (BMD) approach increasingly replaces the no-observed-adverse-effect level approach. In the BMD approach, the RP corresponds to the benchmark dose lower confidence bounds (BMDLs) of a mathematical dose–response model derived from responses of animals over the entire dose range applied. The use of the entire dose range is seen as an important advantage of the BMD approach. This assumes that responses over the entire dose range are relevant for modeling low-dose responses, the basis for the RP. However, if part of the high-dose response was unnoticed triggered by a mechanism of action (MOA) that does not work at low doses, the high-dose response distorts the modeling of low-dose responses. Hence, we investigated the effect of high-dose specific responses on BMDLs by assuming a low- and a high-dose MOA. The BMDLs resulting from modeling fictitious quantal data were scattered over a broad dose range overlapping with the toxic range. Hence, BMDLs are sensitive to high-dose responses even though they might be irrelevant to low-dose response modeling. When applying the BMD approach, care should be taken that high-dose specific responses do not unduly affect the BMDL that derives from low doses.


2005 ◽  
Vol 24 (9) ◽  
pp. 431-437 ◽  
Author(s):  
Lennart Weltje ◽  
Frederick S vom Saal ◽  
Jörg Oehlmann

We discuss the similarities and differences of two types of effects that occur at low but not high doses of chemicals: hormesis and stimulation by oestrogenic endocrine-disrupting chemicals or xenoestrogens. While hormesis is a general phenomenon evoked by many compounds, oestrogenic stimulation occurs for specific chemicals that disrupt actions of endogenous oestrogen. Both types of phenomena can induce an inverted-U dose-response curve, from low-dose stimulation of response, and thus challenge current methods of risk assessment. Hormesis is generally thought to be caused by an over-reaction of detoxification mechanisms, which is considered an adaptive response that should protect an organism from subsequent stress. One view of the hormetic low-dose stimulatory response, i.e., increased performance, is that it is beneficial. In contrast, we propose that for manmade xenoestrogens this is never the case. This is demonstrated with examples for low doses of the oestrogenic environmental chemicals bisphenol A and octylphenol, and the oestrogenic drug-response curves is underestimated by the current threshold model used in risk assessment, and this is likely to apply to other endocrine-disrupting chemicals.


2010 ◽  
Vol 29 (4) ◽  
pp. 249-261 ◽  
Author(s):  
Edward J Calabrese

This paper summarizes numerous conceptual and experimental advances over the past two decades in the study of hormesis. Hormesis is now generally accepted as a real and reproducible biological phenomenon, being highly generalized and independent of biological model, endpoint measured and chemical class/physical stressor. The quantitative features of the hormetic dose response are generally highly consistent, regardless of the model and mechanism, and represent a quantitative index of biological plasticity at multiple levels of biological organization. The hormetic dose-response model has been demonstrated to make far more accurate predictions of responses in low dose zones than either the threshold or linear at low dose models. Numerous therapeutic agents widely used by humans are based on the hormetic dose response and its low dose stimulatory characteristics. It is expected that as low dose responses come to dominate toxicological research that risk assessment practices will incorporate hormetic concepts in the standard setting process.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3714-3714
Author(s):  
Lei Zhang ◽  
Huacheng Luo ◽  
Jing Li ◽  
Hong-Min Ni ◽  
Mark Sellin ◽  
...  

Background: Among all tissues, bone marrow (BM) is the most sensitive tissue to ionizing radiation (IR)-induced acute tissue damage (ATD) and chronic long-term residual damage (LT-RD). BM failure and a significant reduction in blood cells (pancytopenia) often occurs within days after exposure to IR due to the massive death of proliferative hematopoietic progenitor cells (HPCs). However, due to their quiescent cell cycle status and reduced fidelity of DNA repair feature, many hematopoietic stem cells (HSCs) cannot fully eliminate such damage and enter senescence; this results in LT-RD. Abnormal dysplastic hematopoiesis is the most common LT-RD in most victims of IR, followed by an increased risk of leukemia/lymphoma development. Thus IR exposure is an established cause of BM failure and leukemia. A significant increase in the production of inflammatory cytokines is induced by IR which contributes to the pathogenesis of both ATD and LT-RD. Such inflammatory cytokines induce the activation of Ripk3-Mlkl-mediated necroptotic signaling in HSCs. However, the role of Ripk3-Mlkl signaling in IR-induced damage has not studied. Experimental procedures: The self-renewal capacity of HSCs among Ripk3-/-, Mlkl-/- and WT mice were examined and compared by serial transplantation assay. The phenotypes of ATD and LT-RD induced by different dosages of IR were compared among Ripk3-/-, Mlkl-/- and WT mice. The mechanism by which Ripk3 signaling prevents IR-induced leukemia development was studied. Results: Ripk3-Mlkl signaling is not required for hematopoiesis during homeostatic condition. However, during serial transplantation, inactivation of such signaling prevents stress-induced loss of HSCs. Interestingly, Ripk3 signaling also induces an Mlkl-independent ROS-p38-p16-mediated senescence in HSCs. Thus Ripk3-/- HSCs showed better competitive hematopoietic ability compared to Mlkl-/- and WT HSCs during serial transplantation. A sub-lethal dosage of IR (6Gy) induces Ripk3-dependent NF-κB activation and pro-survival gene expression in HSCs, which is necessary for the survival of damaged HSCs. After 6Gy IR, although DNA damage is repaired in most HSCs within 2 days, a proportion of HSCs in WT and Mlkl-/- mice fail to fully repair the damage and undergo p53-p21-dependent senescence. However such cells in Ripk3-/- mice die from apoptosis. Thus the remaining HSCs in Ripk3-/- mice should be functionally normal, while a proportion of the remaining HSCs in Mlkl-/- and WT mice remain damaged but senescent, all as demonstrated by competitive hematopoietic reconstitution assay. Multiple low-doses of IR (1.75Gy once week × 4) induce HSC exhaustion in WT mice but not in Ripk3-/- and Mlkl-/- mice. Interestingly, almost all Ripk3-/- mice develop acute lymphoblastic leukemia within 200 days after such low dose IR, while 45% of WT and 60% of Mlkl-/- mice develop thymomas within 360 days (see Figure). Mechanistically, such low-dose IR stimulates chronic inflammatory cytokine production. Such cytokines induce Ripk3-Mlkl-mediated necroptosis in response to HSC exhaustion observed in WT mice. These cytokines also induce Ripk3-ROS-p38-p16-mediated senescence in response to impaired HSC functioning observed in both WT and Mlkl-/- mice. In Ripk3-/- mice, due to the lack of both necroptotic and senescent signaling, mutant HSCs accumulate and leukemia development is accelerated. Conclusion: Ripk3 signaling plays distinct roles in HSCs in response to different doses of IR. High-dose IR induces Ripk3-dependent NF-κB/survival signaling, which is required for the survival of HSCs which fail to repair the damage. Thus temporal inhibition of Ripk3-NF-κB signaling might help to remove the damaged HSCs thus preventing the occurrence of LT-RD. However multiple low-doses of IR induces Ripk3 activation in HSCs which represses leukemia development by inducing both ROS-p38-p16-mediated senescence and Ripk3-Mlkl-mediated necroptosis. Induced activation of Mlkl-necroptosis might help to repress leukemia development by removing damaged HSCs. Disclosures No relevant conflicts of interest to declare.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Stephanie Lankhorst ◽  
Mariëtte H Kappers ◽  
Stefan Sleijfer ◽  
A H Danser ◽  
Anton H van den Meiracker

Angiogenesis inhibition with the VEGF inhibitor sunitinib is an established anti-cancer therapy, inducing hypertension and nephrotoxicity. We explored the dose- and salt-dependency of these side effects. In male WKY rats, mean arterial pressure (MAP) was monitored telemetrically during oral treatment with a high (27.5 mg/kg.day, n=14), an intermediate (14 mg/kg.day, n=6) and low dose (7 mg/kg.day, n=6) of sunitinib or vehicle (n=8) after normal salt diet for 2 weeks. The low dose-model was also combined with a high salt diet (8% NaCl and saline water). Eight days after administration rats were sacrificed and blood and 24h urine samples collected for biochemical measurements. With the high dose of sunitinib, MAP increased from 94.7±0.9 mmHg to 125.8±1.5 mmHg (Δ31.1±0.9 mmHg, p<0.001). The intermediate and low doses induced MAP rises of 24.3±2.7 mmHg (p<0.001) and 13.4±3.3 mmHg (p<0.001), respectively. The low dose of sunitinib with high salt, induced a MAP rise of 43.5±2.2 mmHg (p<0.001 compared to normal salt). With the high dose, circulating ET-1 increased from 0.6±0.1 pg/ml to 1.6±0.2 pg/ml (p<0.01) and serum cystatine-C from 4.5±0.1 mg/L to 6.6±0.3 mg/L (p<0.001). Comparable increases in circulating ET-1 were seen with the intermediate and low doses, whereas serum cystatine-C did increase with the intermediate dose (to 6.3±0.1 mg/L, p0.05). Serum cystatine-C levels with low and high salt were identical. With the high dose of sunitinib, proteinuria increased from 7.5±1.3 to 33.3±4.8 mg/day (p<0.05). The rise in proteinuria was attenuated with the intermediate (16.2±2.1 mg/day, p<0.01) and low dose (19.9±3.3 mg/day, p<0.01), but increased to 40.4±30.1 mg/day (p>0.05) with high salt. Angiogenesis inhibition-induced hypertension and nephrotoxicity are dose-dependent with a lower threshold for the rise in BP than for renal toxicity. The BP rise observed with the low dose of sunitinib observed in normotensive rats is comparable to the sunitinib-induced BP rise observed in patients and clearly is salt-sensitive. Since cystatine-C levels during normal and high salt diet were comparable, the BP rise during high salt seems independent of renal dysfunction.


2008 ◽  
Vol 169 (3) ◽  
pp. 311-318 ◽  
Author(s):  
E. Elmore ◽  
X-Y. Lao ◽  
R. Kapadia ◽  
E. Giedzinski ◽  
C. Limoli ◽  
...  

2000 ◽  
Vol 19 (1) ◽  
pp. 32-40 ◽  
Author(s):  
E J Calabrese ◽  
L A Baldwin

Despite the substantial development and publication of highly reproducible toxicological data, the concept of hormetic dose-response relationships was never integrated into the mainstream of toxicological thought. Review of the historical foundations of the interpretation of the bioassay and assessment of competitive theories of dose-response relationships lead to the conclusion that multiple factors contributed to the marginalization of hormesis during the middle and subsequent decades ofthe 20th century. These factors include: (a) the close-association of hormesis with homeopathy lead to the hostility of modern medicine toward homeopathy thereby creating a guilt by association framework, and the carry-over influence of that hostility in the judgements of medically-based pharmacologists/ toxicologists toward hormesis; (b) the emphasis of high dose effects linked with a lack of appreciation of the significance of the implications of low dose stimulatory effects; (c) the lack of an evolutionary-based mechanism(s) to account for hormetic effects; and (d) the lack of appropriate scientific advocates to counter aggressive and intellectually powerful critics of the hormetic perspective.


Sign in / Sign up

Export Citation Format

Share Document