ILF3-AS1 promotes cell proliferation and inhibits cell apoptosis of breast cancer by binding with miR-4429 to upregulate RAB14

2021 ◽  
pp. 096032712198942
Author(s):  
Xiaoxue Zhang ◽  
Xianxin Xie ◽  
Kuiran Gao ◽  
Xiaoming Wu ◽  
Yanwei Chen ◽  
...  

As one of the leading causes of cancer-related deaths among women, breast cancer accounts for a 30% increase of incidence worldwide since 1970s. Recently, increasing studies have revealed that the long non-coding RNA ILF3-AS1 is involved in the progression of various cancers. Nevertheless, the role of ILF3-AS1 in breast cancer remains largely unknown. In the present study, we found that ILF3-AS1 was highly expressed in breast cancer tissues and cells. ILF3-AS1 silencing inhibited breast cancer cell proliferation, migration and invasion, and promoted cell apoptosis. ILF3-AS1 bound with miR-4429 in breast cancer cells. Moreover, RAB14 was a downstream target of miR-4429, and miR-4429 expression was negatively correlated with RAB14 or ILF3-AS1 expression in breast cancer tissues. The result of rescue experiments demonstrated that overexpression of RAB14 can reverse the inhibitory effect of ILF3-AS1 knockdown on breast cancer cell proliferation, migration and invasion. Overall, ILF3-AS1 promotes the malignant phenotypes of breast cancer cells by interacting with miR-4429 to regulate RAB14, which might offer a new insight into the underlying mechanism of breast cancer.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Travis B. Salisbury ◽  
Gary Z. Morris ◽  
Justin K. Tomblin ◽  
Ateeq R. Chaudhry ◽  
Carla R. Cook ◽  
...  

Obesity increases human cancer risk and the risk for cancer recurrence. Adipocytes secrete paracrine factors termed adipokines that stimulate signaling in cancer cells that induce proliferation. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays roles in tumorigenesis, is regulated by exogenous lipophilic chemicals, and has been explored as a therapeutic target for cancer therapy. Whether exogenous AHR ligands modulate adipokine stimulated breast cancer cell proliferation has not been investigated. We provide evidence that adipocytes secrete insulin-like growth factor 2 (IGF-2) at levels that stimulate the proliferation of human estrogen receptor (ER) positive breast cancer cells. Using highly specific AHR ligands and AHR short interfering RNA (AHR-siRNA), we show that specific ligand-activated AHR inhibits adipocyte secretome and IGF-2-stimulated breast cancer cell proliferation. We also report that a highly specific AHR agonist significantly (P<0.05) inhibits the expression of E2F1, CCND1 (known as Cyclin D1), MYB, SRC, JAK2, and JUND in breast cancer cells. Collectively, these data suggest that drugs that target the AHR may be useful for treating cancer in human obesity.


2020 ◽  
Author(s):  
Tieying Hou ◽  
Long Ye ◽  
Qingsong Qin ◽  
Shulin Wu

Abstract Background: Breast cancer is one of the most common cancer in the world. Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in the development of breast cancer. In this study, we aimed to investigate the role of LINC00504 in breast cancer progression. Methods: Quantification real-time PCR was used to analyzed the expression levels of LINC00504 and miR‐140-5p in breast cancer tissues and cell lines. Cell proliferation, migration and invasion were assessed by Cell Counting Kit‐8, transwell assay and Immunofluorescence. Dual-luciferase reporter assay and RNA Immunoprecipitation assay were performed to verify the interaction between LINC00504 and miR‐140-5p. The expression levels of VEGFA, CDH1 and VIM were demonstrated by western blot assays. Result: Here, we found that LINC00504 is up regulated in breast cancer tissues and cell lines. Down regulation of LINC00504 mediated by shRNA suppressed the proliferation, migration, and invasion of breast cancer cells in vitro and in vivo. Furthermore, LINC00504 was found to competitively regulate miR‐140-5p via targeting VEGFA. Inhibition of miR‐140-5p attenuated the knockdown-LINC00504 induced inhibition of breast cancer cell proliferation and invasion.Conclusion: Taken together, our results demonstrated the mechanism of the LINC00504–miR‐140-5p–VEGFA axis in breast cancer cell proliferation and invasion and may lead to new lncRNA-based diagnostics or therapeutics for breast cancer.


2020 ◽  
Vol 21 (8) ◽  
pp. 2906
Author(s):  
Yih Ho ◽  
Zi-Lin Li ◽  
Ya-Jung Shih ◽  
Yi-Ru Chen ◽  
Kuan Wang ◽  
...  

Hormones and their receptors play an important role in the development and progression of breast cancer. Hormones regulate the proliferation of breast cancer cells through binding between estrogen or progestins and steroid receptors that may reside in the cytoplasm or be transcriptionally activated as steroid–protein nuclear receptor complexes. However, receptors for nonpeptide hormones also exist in the plasma membrane. Via those receptors, hormones are able to stimulate breast cancer cell proliferation when activated. Integrins are heterodimeric structural proteins of the plasma membrane. Their primary functions are to interact with extracellular matrix proteins and growth factors. Recently, integrin αvβ3 has been identified as a receptor for nonpeptide hormones, such as thyroid hormone and dihydrotestosterone (DHT). DHT promotes the proliferation of human breast cancer cells through binding to integrin αvβ3. A receptor for resveratrol, a polyphenol stilbene, also exists on this integrin in breast cancer cells, mediating the anti-proliferative, pro-apoptotic action of the compound in these cells. Unrelated activities of DHT and resveratrol that originate at integrin depend upon downstream stimulation of mitogen-activated protein kinase (MAPK, ERK1/2) activity, suggesting the existence of distinct, function-specific pools of ERK1/2 within the cell. This review will discuss the features of these receptors in breast cancer cells, in turn suggesting clinical applications that are based on the interactions of resveratrol/DHT with integrin αvβ3 and other androgen receptors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fengqin Shi ◽  
Ya Li ◽  
Rui Han ◽  
Alan Fu ◽  
Ronghua Wang ◽  
...  

AbstractValerian root (Valeriana officinalis) is a popular and widely available herbal supplement used to treat sleeping disorders and insomnia. The herb’s ability to ameliorate sleep dysfunction may signify an unexplored anti-tumorigenic effect due to the connection between circadian factors and tumorigenesis. Of particular interest are the structural similarities shared between valeric acid, valerian's active chemical ingredient, and certain histone deacteylase (HDAC) inhibitors, which imply that valerian may play a role in epigenetic gene regulation. In this study, we tested the hypothesis that the circadian-related herb valerian can inhibit breast cancer cell growth and explored epigenetic changes associated with valeric acid treatment. Our results showed that aqueous valerian extract reduced growth of breast cancer cells. In addition, treatment of valeric acid was associated with decreased breast cancer cell proliferation, migration, colony formation and 3D formation in vitro in a dose- and time-dependent manner, as well as reduced HDAC activity and a global DNA hypomethylation. Overall, these findings demonstrate that valeric acid can decrease the breast cancer cell proliferation possibly by mediating epigenetic modifications such as the inhibition of histone deacetylases and alterations of DNA methylation. This study highlights a potential utility of valeric acid as a novel HDAC inhibitor and a therapeutic agent in the treatment of breast cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yaohua Fan ◽  
Yan Li ◽  
Yuzhang Zhu ◽  
Guiping Dai ◽  
Dongjuan Wu ◽  
...  

Objectives. Breast cancer is the most common malignant tumor among females, and miRNAs have been reported to play an important regulatory role in breast cancer progression. This study aimed to explore the function and underlying molecular mechanism of miR-301b-3p in breast cancer. Methods. Differential analysis and survival analysis were performed based on the data accessed from the TCGA-BRCA dataset for identification of the target miRNA. Bioinformatics analysis was conducted to predict the downstream target gene of the miRNA. Real-time quantitative PCR was carried out to detect the expression of miR-301b-3p and nuclear receptor subfamily 3 group C member 2 (NR3C2). Western blot was used to assess the protein expression of NR3C2. Cell counting kit-8 assay was performed to evaluate the proliferation of breast cancer cells. Transwell assay was conducted to determine the migratory and invasive abilities of breast cancer cells. Dual-luciferase reporter assay was employed to verify the targeting relationship between miR-301b-3p and NR3C2. Results. miR-301b-3p was elevated in breast cancer cell lines and promoted cell proliferation, migration, and invasion in terms of its biological function in breast cancer. NR3C2 was validated as a direct target of miR-301b-3p via bioinformatics analysis and dual-luciferase reporter assay, and NR3C2 was downregulated in breast cancer cell lines. The rescue experiment indicated that NR3C2 was involved in the mechanism by which miR-301b-3p regulated the malignant phenotype of breast cancer cells. Conclusion. The present study revealed for the first time that miR-301b-3p could foster breast cancer cell proliferation, migration, and invasion by targeting NR3C2, unveiling that miR-301b-3p is a novel carcinogen in breast cancer.


2020 ◽  
Author(s):  
tieying hou ◽  
long ye ◽  
qingsong qin ◽  
shulin wu

Abstract Background: Breast cancer is one of the most common cancer in the world. Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in the development of breast cancer. In this study, we aimed to investigate the role of LINC00504 in breast cancer progression. Methods: Quantification real-time PCR was used to analyzed the expression levels of LINC00504 and miR‐140-5p in breast cancer tissues and cell lines. Cell proliferation, migration and invasion were assessed by Cell Counting Kit‐8, transwell assay and Immunofluorescence. Dual-luciferase reporter assay and RNA Immunoprecipitation assay were performed to verify the interaction between LINC00504 and miR‐140-5p. The expression levels of VEGFA, CDH1 and VIM were demonstrated by western blot assays. Result: Here, we found that LINC00504 is up regulated in breast cancer tissues and cell lines. Down regulation of LINC00504 mediated by shRNA suppressed the proliferation, migration, and invasion of breast cancer cells in vitro and in vivo. Furthermore, LINC00504 was found to competitively regulate miR‐140-5p via targeting VEGFA. Inhibition of miR‐140-5p attenuated the knockdown-LINC00504 induced inhibition of breast cancer cell proliferation and invasion. Conclusion: Taken together, our results demonstrated the mechanism of the LINC00504–miR‐140-5p–VEGFA axis in breast cancer cell proliferation and invasion and may lead to new lncRNA-based diagnostics or therapeutics for breast cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dan Sun ◽  
Ying-Chun Li ◽  
Xiao-Yu Zhang

Ovarian and breast cancer are prevalent female malignancies with increasing occurrence incidence and metastasis, significantly affecting the health and life quality of women globally. Anesthetic lidocaine has presented anti-tumor activities in the experimental conditions. However, the effect of lidocaine on ovarian and breast cancer remains elusive. We identified the important function of lidocaine in enhancing ferroptosis and repressing progression of ovarian and breast cancer. Our data showed that lidocaine further repressed erastin-inhibited ovarian and breast cancer cell viabilities. The treatment of lidocaine induced accumulation of Fe2+, iron and lipid reactive oxygen species (ROS) in ovarian and breast cancer cells. The ovarian and breast cancer cell proliferation was suppressed while cell apoptosis was induced by lidocaine in vitro. Lidocaine attenuated invasion and migration of ovarian and breast cancer cells as well. Regarding the mechanism, we found that lidocaine downregulated solute carrier family 7 member 11 (SLC7A11) expression by enhancing microRNA-382-5p (miR-382-5p) in the cells. The inhibition of miR-382-5p blocked lidocaine-induced ferroptosis of ovarian and breast cancer cells. MiR-382-5p/SLC7A11 axis was involved in lidocaine-mediated inhibition of ovarian and breast cancer cell proliferation in vitro. The miR-382-5p expression was down-regulated but SLC7A11 expression was up-regulated in clinical ovarian and breast cancer samples. Furthermore, the treatment of lidocaine repressed tumor growth of ovarian cancer cells in vivo, in which the miR-382-5p expression was increased while SLC7A11 expression was decreased. Consequently, we concluded that the lidocaine promoted ferroptosis by miR-382-5p/SLC7A11 axis in ovarian and breast cancer cells. The clinical value of lidocaine in the treatment of ovarian and breast cancer deserves to be proved in detail.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2018 ◽  
Vol Volume 11 ◽  
pp. 3195-3203 ◽  
Author(s):  
Shudong Gu ◽  
Haibin Liang ◽  
Donghui Qi ◽  
Liyan Mao ◽  
Guoxin Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document