A robust score test of homogeneity for zero-inflated count data

2020 ◽  
Vol 29 (12) ◽  
pp. 3653-3665
Author(s):  
Wei-Wen Hsu ◽  
David Todem ◽  
Nadeesha R Mawella ◽  
KyungMann Kim ◽  
Richard R Rosenkranz

In many applications of zero-inflated models, score tests are often used to evaluate whether the population heterogeneity as implied by these models is consistent with the data. The most frequently cited justification for using score tests is that they only require estimation under the null hypothesis. Because this estimation involves specifying a plausible model consistent with the null hypothesis, the testing procedure could lead to unreliable inferences under model misspecification. In this paper, we propose a score test of homogeneity for zero-inflated models that is robust against certain model misspecifications. Due to the true model being unknown in practical settings, our proposal is developed under a general framework of mixture models for which a layer of randomness is imposed on the model to account for uncertainty in the model specification. We exemplify this approach on the class of zero-inflated Poisson models, where a random term is imposed on the Poisson mean to adjust for relevant covariates missing from the mean model or a misspecified functional form. For this example, we show through simulations that the resulting score test of zero inflation maintains its empirical size at all levels, albeit a loss of power for the well-specified non-random mean model under the null. Frequencies of health promotion activities among young Girl Scouts and dental caries indices among inner-city children are used to illustrate the robustness of the proposed testing procedure.

Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1294
Author(s):  
Lijuan Huo ◽  
Jin Seo Cho

This study examined the extreme learning machine (ELM) applied to the Wald test statistic for the model specification of the conditional mean, which we call the WELM testing procedure. The omnibus test statistics available in the literature weakly converge to a Gaussian stochastic process under the null that the model is correct, and this makes their application inconvenient. By contrast, the WELM testing procedure is straightforwardly applicable when detecting model misspecification. We applied the WELM testing procedure to the sequential testing procedure formed by a set of polynomial models and estimate an approximate conditional expectation. We then conducted extensive Monte Carlo experiments to evaluate the performance of the sequential WELM testing procedure and verify that it consistently estimates the most parsimonious conditional mean when the set of polynomial models contains a correctly specified model. Otherwise, it consistently rejects all the models in the set.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 107
Author(s):  
Elisavet M. Sofikitou ◽  
Ray Liu ◽  
Huipei Wang ◽  
Marianthi Markatou

Pearson residuals aid the task of identifying model misspecification because they compare the estimated, using data, model with the model assumed under the null hypothesis. We present different formulations of the Pearson residual system that account for the measurement scale of the data and study their properties. We further concentrate on the case of mixed-scale data, that is, data measured in both categorical and interval scale. We study the asymptotic properties and the robustness of minimum disparity estimators obtained in the case of mixed-scale data and exemplify the performance of the methods via simulation.


2015 ◽  
Vol 14 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Rosa J. Meijer ◽  
Thijmen J.P. Krebs ◽  
Jelle J. Goeman

AbstractWe present a multiple testing method for hypotheses that are ordered in space or time. Given such hypotheses, the elementary hypotheses as well as regions of consecutive hypotheses are of interest. These region hypotheses not only have intrinsic meaning but testing them also has the advantage that (potentially small) signals across a region are combined in one test. Because the expected number and length of potentially interesting regions are usually not available beforehand, we propose a method that tests all possible region hypotheses as well as all individual hypotheses in a single multiple testing procedure that controls the familywise error rate. We start at testing the global null-hypothesis and when this hypothesis can be rejected we continue with further specifying the exact location/locations of the effect present. The method is implemented in the


1998 ◽  
Vol 21 (2) ◽  
pp. 218-219
Author(s):  
Michael G. Shafto

Chow's book provides a thorough analysis of the confusing array of issues surrounding conventional tests of statistical significance. This book should be required reading for behavioral and social scientists. Chow concludes that the null-hypothesis significance-testing procedure (NHSTP) plays a limited, but necessary, role in the experimental sciences. Another possibility is that – owing in part to its metaphorical underpinnings and convoluted logic – the NHSTP is declining in importance in those few sciences in which it ever played a role.


1979 ◽  
Vol 8 (1) ◽  
pp. 13-16 ◽  
Author(s):  
P. Geoffrey Allen ◽  
Thomas H. Stevens

Bias in estimating recreational values may result if congestion is ignored in the demand model specification. Theoretical and empirical considerations pertaining to recreation congestion are summarized. Empirical results for camping in Western Massachusetts are presented which demonstrate the potential degree of bias from demand model misspecification. The results indicate that recreational values may be strongly influenced by congestion effects and that camping areas with relatively low densities may have a higher economic value than high density areas with similar facilities.


2020 ◽  
Author(s):  
Takuya Kawahara ◽  
Tomohiro Shinozaki ◽  
Yutaka Matsuyama

Abstract Background: In the presence of dependent censoring even after stratification of baseline covariates, the Kaplan–Meier estimator provides an inconsistent estimate of risk. To account for dependent censoring, time-varying covariates can be used along with two statistical methods: the inverse probability of censoring weighted (IPCW) Kaplan–Meier estimator and the parametric g-formula estimator. The consistency of the IPCW Kaplan–Meier estimator depends on the correctness of the model specification of censoring hazard, whereas that of the parametric g-formula estimator depends on the correctness of the models for event hazard and time-varying covariates. Methods: We combined the IPCW Kaplan–Meier estimator and the parametric g-formula estimator into a doubly robust estimator that can adjust for dependent censoring. The estimator is theoretically more robust to model misspecification than the IPCW Kaplan–Meier estimator and the parametric g-formula estimator. We conducted simulation studies with a time-varying covariate that affected both time-to-event and censoring under correct and incorrect models for censoring, event, and time-varying covariates. We applied our proposed estimator to a large clinical trial data with censoring before the end of follow-up. Results: Simulation studies demonstrated that our proposed estimator is doubly robust, namely it is consistent if either the model for the IPCW Kaplan–Meier estimator or the models for the parametric g-formula estimator, but not necessarily both, is correctly specified. Simulation studies and data application demonstrated that our estimator can be more efficient than the IPCW Kaplan–Meier estimator. Conclusions: The proposed estimator is useful for estimation of risk if censoring is affected by time-varying risk factors.


Author(s):  
Richard McCleary ◽  
David McDowall ◽  
Bradley J. Bartos

Chapter 6 addresses the sub-category of internal validity defined by Shadish et al., as statistical conclusion validity, or “validity of inferences about the correlation (covariance) between treatment and outcome.” The common threats to statistical conclusion validity can arise, or become plausible through either model misspecification or through hypothesis testing. The risk of a serious model misspecification is inversely proportional to the length of the time series, for example, and so is the risk of mistating the Type I and Type II error rates. Threats to statistical conclusion validity arise from the classical and modern hybrid significance testing structures, the serious threats that weigh heavily in p-value tests are shown to be undefined in Beyesian tests. While the particularly vexing threats raised by modern null hypothesis testing are resolved through the elimination of the modern null hypothesis test, threats to statistical conclusion validity would inevitably persist and new threats would arise.


2020 ◽  
pp. 1-55
Author(s):  
Jonathan B. Hill

We present a new robust bootstrap method for a test when there is a nuisance parameter under the alternative, and some parameters are possibly weakly or nonidentified. We focus on a Bierens (1990, Econometrica 58, 1443–1458)-type conditional moment test of omitted nonlinearity for convenience. Existing methods include the supremum p-value which promotes a conservative test that is generally not consistent, and test statistic transforms like the supremum and average for which bootstrap methods are not valid under weak identification. We propose a new wild bootstrap method for p-value computation by targeting specific identification cases. We then combine bootstrapped p-values across polar identification cases to form an asymptotically valid p-value approximation that is robust to any identification case. Our wild bootstrap procedure does not require knowledge of the covariance structure of the bootstrapped processes, whereas Andrews and Cheng’s (2012a, Econometrica 80, 2153–2211; 2013, Journal of Econometrics 173, 36–56; 2014, Econometric Theory 30, 287–333) simulation approach generally does. Our method allows for robust bootstrap critical value computation as well. Our bootstrap method (like conventional ones) does not lead to a consistent p-value approximation for test statistic functions like the supremum and average. Therefore, we smooth over the robust bootstrapped p-value as the basis for several tests which achieve the correct asymptotic level, and are consistent, for any degree of identification. They also achieve uniform size control. A simulation study reveals possibly large empirical size distortions in nonrobust tests when weak or nonidentification arises. One of our smoothed p-value tests, however, dominates all other tests by delivering accurate empirical size and comparatively high power.


2017 ◽  
Vol 78 (4) ◽  
pp. 653-678 ◽  
Author(s):  
Carl F. Falk ◽  
Scott Monroe

Lagrange multiplier (LM) or score tests have seen renewed interest for the purpose of diagnosing misspecification in item response theory (IRT) models. LM tests can also be used to test whether parameters differ from a fixed value. We argue that the utility of LM tests depends on both the method used to compute the test and the degree of misspecification in the initially fitted model. We demonstrate both of these points in the context of a multidimensional IRT framework. Through an extensive Monte Carlo simulation study, we examine the performance of LM tests under varying degrees of model misspecification, model size, and different information matrix approximations. A generalized LM test designed specifically for use under misspecification, which has apparently not been previously studied in an IRT framework, performed the best in our simulations. Finally, we reemphasize caution in using LM tests for model specification searches.


Sign in / Sign up

Export Citation Format

Share Document