scholarly journals Effect of an Interleave Natural Viscoelastic Layer on the Dynamic Behaviour of a Bio-Based Composite

2017 ◽  
Vol 26 (6) ◽  
pp. 096369351702600
Author(s):  
H. Daoud ◽  
J.-L. Rebiere ◽  
A. El Mahi ◽  
M. Taktak ◽  
M. Haddar

The purpose of the present letter is to analyse the damping properties of a bio-based composite with flax fibre. Damping parameters were investigated using beam test specimens and an impulse technique. Through a series of resonance vibration tests, the natural frequencies and modal damping were evaluated. The second part of the work was to investigate the effect of an interleave viscoelastic layer made of natural rubber on the dynamic behaviour of the composite. A comparison of the different results was performed; it shows that the viscoelastic layer had a significant influence on vibration behaviour, bending stiffness and damping factors.

2016 ◽  
Vol 08 (05) ◽  
pp. 1650068 ◽  
Author(s):  
Hajer Daoud ◽  
Jean-Luc Rebière ◽  
Amine Makni ◽  
Mohamed Taktak ◽  
Abderrahim El Mahi ◽  
...  

In this paper, the damping properties of flax fiber reinforced composites were investigated. Throughout a series of resonance vibration tests, the natural frequencies and the modal damping were evaluated. A numerical modelling was also produced by using a finite element model to determine the energies dissipated in each layer of the laminate structure in order to calculate the damping factors. The results obtained for the dynamic properties of flax fiber reinforced composites from experimental data and numerical analysis method show close agreement. The effect of fiber orientations on the damping behavior for this material was investigated. Another part of our work was to insert a thin viscoelastic layer within the flax fiber laminate. The interposition of this viscoelastic layer had a significant influence on the vibration behavior, bending stiffness and damping factors.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550054 ◽  
Author(s):  
Maroua Hammami ◽  
Abderrahim El Mahi ◽  
Chafik Karra ◽  
Mohamed Haddar

The paper presents an analysis of the vibration behavior of glass fiber reinforced composites with two overlapping delaminations. The effect of delamination length on the vibration parameters is studied. Throughout a series of vibration tests, the change of natural frequencies and modal damping due to delaminations is evaluated. A numerical simulation considering finite element analysis allows to predict the change of natural frequencies for a known damage size. Modal damping was established which evaluates the different energies dissipated in the material layers direction of the fiber reinforced composites. A comparison of the different results was performed. Next, strain energy of layers directions were established by a numerical analysis and discussed.


Author(s):  
Timothy W. Dimond ◽  
Amir A. Younan ◽  
Paul E. Allaire

There is significant disagreement concerning the frequency response of tilting pad journal bearings (TPJBs) due to non-synchronous excitations. Two linear models for the frequency dependence of TPJBs have been proposed. The first model, the full-coefficient or KC model, considers Np tilting pads and rotor motions for Np + 2 degrees of freedom. Dynamic reduction of the KC model results in eight frequency-dependent stiffness and damping coefficients. The second model, based on results from bearing system identification experiments, yields twelve frequency-independent stiffness, damping, and mass (KCM) coefficients. Experimental data has been presented to support both models. There are major differences in the two approaches. The analysis in this paper takes a new approach of considering the pad dynamics explicitly in a state-space modal analysis. TPJB shaft and bearing pad stiffness and damping coefficients are calculated using a well known laminar, isothermal analysis and a pad assembly method. The TPJB rotor and pad full system eigenvalues and eigenvectors are then evaluated using state-space methods, with rotor and bearing pad inertias included explicitly in the model. The full bearing coefficient results are also non-synchronously reduced to the 8 stiffness and damping coefficients are and expressed as shaft complex impedances. The system identification method is then applied to these complex impedances, and the state space modal analysis is applied to the resulting KCM model. The damping ratios, natural frequencies, and mode shapes from the two bearing representations are compared. Two example TPJBs are examined in detail. The analysis indicated that four underdamped modes, two forward and two backward, dominate the rotor response over excitation frequencies from 0 to running speed. The full coefficient, non-synchronously reduced model predicts additional critically damped or overdamped modes due to the additional degrees of freedom as compared to the identified KCM model. The KCM model results in natural frequencies that are 63–65 percent higher than the full coefficient model. The difference in modal damping ratio estimates depend on the TPJB considered, with KCM being 7–17 percent higher than the full coefficient model. The full coefficient model also indicates that the bearing pads contribute significantly to the underdamped modes. The results indicate that the system identification method results in a reduced order model of TPBJ dynamic behavior. Additionally, the differences in the modal calculated system natural frequency and modal damping have potential implications for rotordynamic analyses of flexible rotors, such as critical speed and stability analyses.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Timothy W. Dimond ◽  
Amir A. Younan ◽  
Paul Allaire

There is a significant disagreement in the literature concerning the proper evaluation of the experimental identification and frequency response of tilting-pad journal bearings (TPJBs) due to shaft excitations. Two linear models for the frequency dependence of TPJBs have been proposed. The first model, the full coefficient or stiffness-damping (KC) model, considers Np tilting pads and two rotor radial motions for Np+2 degrees of freedom. The dynamic reduction of the KC model results in eight frequency-dependent stiffness and damping coefficients. The second model, based on bearing system identification experimental results, employs 12 frequency-independent stiffness, damping, and mass (KCM) coefficients; pad degrees of freedom are not considered explicitly. Experimental data have been presented to support both models. There are major differences in the two approaches. The present analysis takes a new approach of considering pad dynamics explicitly in a state-space modal analysis. TPJB shaft and bearing pad stiffness and damping coefficients are calculated using a well known laminar, isothermal analysis and a pad assembly method. The TPJB rotor and pad KC model eigenvalues and eigenvectors are then evaluated using state-space methods, with rotor and bearing pad inertias included explicitly in the model. The KC model results are also nonsynchronously reduced to the eight stiffness and damping coefficients and are expressed as shaft complex impedances. The system identification method is then applied to these complex impedances, and the state-space modal analysis is applied to the resulting KCM model. The damping ratios, natural frequencies, and mode shapes from the two bearing representations are compared. Two sample TPJB cases are examined in detail. The analysis indicated that four underdamped modes, two forward and two backward, dominate the rotor response over excitation frequencies from 0 to approximately running speed. The KC model predicts additional nearly critically damped modes primarily involving pad degrees of freedom, which do not exist in the identified KCM model. The KCM model results in natural frequencies that are 63–65% higher than the KC model. The difference in modal damping ratio estimates depends on the TPJB considered; the KCM estimate was 7–17% higher than the KC model. The results indicate that the KCM system identification method results in a reduced order model of TPBJ dynamic behavior, which may not capture physically justifiable results. Additionally, the differences in the calculated system natural frequency and modal damping have potential implications for rotordynamic analyses of flexible rotors.


2014 ◽  
Vol 216 ◽  
pp. 151-156 ◽  
Author(s):  
Liviu Bereteu ◽  
Mircea Vodǎ ◽  
Gheorghe Drăgănescu

The aim of this work was to determine by vibration tests the longitudinal elastic modulus and shear modulus of welded joints by flux cored arc welding. These two material properties are characteristic elastic constants of tensile stress respectively torsion stress and can be determined by several non-destructive methods. One of the latest non-destructive experimental techniques in this field is based on the analysis of the vibratory signal response from the welded sample. An algorithm based on Pronys series method is used for processing the acquired signal due to sample response of free vibrations. By the means of Finite Element Method (FEM), the natural frequencies and modes shapes of the same specimen of carbon steel were determined. These results help to interpret experimental measurements and the vibration modes identification, and Youngs modulus and shear modulus determination.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 799
Author(s):  
Justyna Miedzianowska ◽  
Marcin Masłowski ◽  
Przemysław Rybiński ◽  
Krzysztof Strzelec

Increasingly, raw materials of natural origin are used as fillers in polymer composites. Such biocomposites have satisfactory properties. To ensure above-average functional properties, modifications of biofillers with other materials are also used. The presented research work aimed to produce and characterize elastomeric materials with a straw-based filler and four different types of montmorillonite. The main research goal was to obtain improved functional parameters of vulcanizates based on natural rubber. A series of composites filled with straw and certain types of modified and unmodified nano-clays in various ratios and amounts were prepared. Then, they were subjected to a series of tests to assess the impact of the hybrids used on the final product. It has been shown that the addition of optimal amounts of biofillers can, inter alia, increase the tensile strength of the composite, improve damping properties, extend the burning time of the material and affect the course of vulcanization or cross-linking density.


Author(s):  
Y K Ahn ◽  
J-Y Ha ◽  
Y-H Kim ◽  
B-S Yang ◽  
M Ahmadian ◽  
...  

This paper presents an analytical and experimental analysis of the characteristics of a squeeze-type magnetorheological (MR) mount which can be used for various vibration isolation areas. The concept of the squeeze-type mount and details of the design of a squeeze-type MR mount are discussed. These are followed by a detailed description of the test set-up for evaluating the dynamic behaviour of the mount. A series of tests was conducted on the prototype mount built for this study, in order to characterize the changes occurring as a result of changing electrical current to the mount. The results of this study show that increasing electrical current to the mount, which increases the yield stress of the MR fluid, will result in an increase in both stiffness and damping of the mount. The results also show that the mount hysteresis increases with increase in current to the MR fluid, causing changes in stiffness and damping at different input frequencies.


2017 ◽  
Vol 73 ◽  
pp. 53-69 ◽  
Author(s):  
Matias Bossio ◽  
David Valentín ◽  
Alexandre Presas ◽  
David Ramos Martin ◽  
Eduard Egusquiza ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Sergio Vincenzo Calcina ◽  
Laura Eltrudis ◽  
Luca Piroddi ◽  
Gaetano Ranieri

This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012) and at the end of winter (March 2013), respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results.


Author(s):  
Zhang Xianmin ◽  
Liu Jike

Abstract Control of dynamic vibration is critical to the operational success of many flexible mechanism systems. This paper addresses the problem of vibration control of such mechanisms through passive damping, using constrained layer damping treatment technique. A new type of shape function for three layer frame element containing a viscoelastic layer is developed. The equations of motion of the damped flexible mechanism are derived. Modal loss factors of this kind mechanisms are predicated from undamped normal mode by means of the modal strain energy method. Comparisons between the results obtained by this paper and the results obtained by exact solution of the governing equations for a well known sandwich beam demonstrate that the method presented in this paper is correct and reliable. Application of this method in predication of modal damping ratios for damped mechanisms is discussed. It is believed that the method of this paper hold the greatest potential for optimal design of damped flexible mechanism systems.


Sign in / Sign up

Export Citation Format

Share Document