scholarly journals Determination of Stress Distribution in Fibre Bridged Cracks in Ceramic Matrix Composites

1994 ◽  
Vol 3 (4) ◽  
pp. 096369359400300
Author(s):  
F. Bollet ◽  
C. Galiotis ◽  
M. J. Reece

Laser Raman Spectroscopy is being used to characterise interfacial properties and stress concentration in bridging fibres of a glass ceramic matrix composite. The preliminary results show that the stress distribution along fibres can be mapped. This technique will therefore assist the understanding of the fracture and fatigue behaviour of these materials.

2017 ◽  
Vol 13 ◽  
pp. 142
Author(s):  
Soňa Valentová ◽  
Vladimír Hrbek ◽  
Michal Šejnoha

The present paper is concerned with the analysis of a ceramic matrix composite, more specifically the plain weave textile fabric composite made of basalt fibers embedded into the pyrolyzed polysiloxane matrix. Attention is paid to the determination of effective elastic properties of the yarn via homogenization based on the Mori-Tanaka averaging scheme and the 1st order numerical homogenization method adopting a suitable representative computational model. The latter approach is then employed to simulate the response of the yarn when loaded beyond the elastic limits. The required mechanical properties of individual material phases are directly measured using nanoindentation with in-build scanning probe microscopy. Applicability of the proposed computational methodology is supported by the analysis of a unidirectional fibrous composite, representing the yarn, subjected to a macroscopically uniform strain.


2020 ◽  
Vol 299 ◽  
pp. 37-42
Author(s):  
O.A. Fomina ◽  
Andrey Yu. Stolboushkin

A model of the transition layer between the shell and the core of a ceramic matrix composite from coal waste and clay has been developed. The chemical, granulometric and mineral compositions of the beneficiation of carbonaceous mudstones and clay were studied. The technological and ceramic properties of raw materials for the samples manufacturing were determined. The method of manufacturing multilayer ceramic samples from coal waste, clay and their mixture is given. The number of transition layers in the contact zone between the clay shell and the core from coal wastes is determined. The deformation and swelling phenomena of model samples from coal wastes, clay, and their mixtures were revealed at the firing temperature of more than 1000 °C. The formation of a reducing ambient in the center of the sample with insufficient air flow is shown. The influence of the carbonaceous particles amount and the ferrous form iron oxide in the coal wastes on the processes of expansion of multilayer samples during firing has been established.


2000 ◽  
Vol 122 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Karren L. More ◽  
Peter F. Tortorelli ◽  
Mattison K. Ferber ◽  
Larry R. Walker ◽  
James R. Keiser ◽  
...  

A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204°C, and 15 percent steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions. [S0742-4795(00)02402-9]


Author(s):  
Michael J. Walock ◽  
Vann Heng ◽  
Andy Nieto ◽  
Anindya Ghoshal ◽  
Muthuvel Murugan ◽  
...  

Future gas turbine engines will operate at significantly higher temperatures (∼1800 °C) than current engines (∼1400 °C) for improved efficiency and power density. As a result, the current set of metallic components (titanium-based and nickel-based superalloys) will be replaced with ceramics and ceramic matrix composites (CMCs). These materials can survive the higher operating temperatures of future engines at significant weight savings over the current metallic components, i.e., advanced ceramic components will facilitate more powerful engines. While oxide-based CMCs may not be suitable candidates for hot-section components, they may be suitable for structural and/or exhaust components. However, a more thorough understanding of the performance under relevant environment of these materials is needed. To this end, this work investigates the high-temperature durability of a family of oxide–oxide CMCs (Ox–Ox CMCs) under an engine-relevant environment. Flat Ox–Ox CMC panels were cyclically exposed to temperatures up to 1150 °C, within 240 m/s (∼0.3 M) gas flows and hot sand impingement. Front and backside surface temperatures were monitored by a single-wavelength (SW) pyrometer and thermocouple, respectively. In addition, an infrared (IR) camera was used to evaluate the damage evolution of the samples during testing. Flash thermography nondestructive evaluation (NDE) was used to elucidate defects present before and after thermal exposure.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Hye-gyu Kim ◽  
Wooseok Ji ◽  
Nam Choon Cho ◽  
Jong Kyoo Park

Microstructural fracture behavior of a ceramic matrix composite (CMC) with nonuniformly distributed fibers is studied in the presentation. A comprehensive numerical analysis package to study the effect of nonuniform fiber dimensions and locations on the microstructural fracture behavior is developed. The package starts with an optimization algorithm for generating representative volume element (RVE) models that are statistically equivalent to experimental measurements. Experimentally measured statistical data are used as constraints while the optimization algorithm is running. Virtual springs are utilized between any adjacent fibers to nonuniformly distribute the coated fibers in the RVE model. The virtual spring with the optimization algorithm can efficiently generate multiple RVEs that are statistically identical to each other. Smeared crack approach (SCA) is implemented to consider the fracture behavior of the CMC material in a mesh-objective manner. The RVEs are subjected to tension as well as the shear loading conditions. SCA is capable of predicting different fracture patterns, uniquely defined by not only the fiber arrangement but also the specific loading type. In addition, global stress-strain curves show that the microstructural fracture behavior of the RVEs is highly dependent on the fiber distributions.


1976 ◽  
Vol 29 (3) ◽  
pp. 507 ◽  
Author(s):  
RP Cooney ◽  
NT Tam

Changes in the Raman spectrum of pyridine on a silica surface with increasing surface coverage may be used to determine the monolayer capacity. The method, which is independent of the BET method, produces a result which is in quantitative agreement with the BET result.


Sign in / Sign up

Export Citation Format

Share Document