Study on Mechanical Properties and Water Absorption Behaviour of Wastepaper Fibre/Recycled Polypropylene Composites

2013 ◽  
Vol 21 (6) ◽  
pp. 395-402 ◽  
Author(s):  
Zhang Xiaolin ◽  
Bo Xiangfeng ◽  
Wang Rumin
Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 782 ◽  
Author(s):  
Wei Wang ◽  
Xiaomin Guo ◽  
Defang Zhao ◽  
Liu Liu ◽  
Ruiyun Zhang ◽  
...  

Environmentally sound composites reinforced with natural fibers or particles interest many researchers and engineers due to their great potential to substitute the traditional composites reinforced with glass fibers. However, the sensitivity of natural fiber-reinforced composites to water has limited their applications. In this paper, wood powder-reinforced polypropylene composites (WPCs) with various wood content were prepared and subjected to water absorption tests to study the water absorption procedure and the effect of water absorbed in the specimens on the mechanical properties. Water soaking tests were carried out by immersion of composite specimens in a container of distilled water maintained at three different temperatures, 23, 60 and 80 °C. The results showed that the moisture absorption content was related to wood powder percentage and they had a positive relationship. The transfer process of water molecules in the sample was found to follow the Fickian model and the diffusion constant increased with elevated water temperature. In addition, tensile and bending tests of both dry and wet composite samples were conducted and the results indicated that water absorbed in composite specimens degraded their mechanical properties. The tensile strength and modulus of the composites reinforced with 15, 30, 45 wt % wood powder decreased by 5.79%, 17.2%, 32.06% and 25.31%, 33.6%, 47.3% respectively, compared with their corresponding dry specimens. The flexural strength and modulus of the composite samples exhibited a similar result. Furthermore, dynamic mechanical analysis (DMA) also confirmed that the detrimental effect of water molecules on the composite specimens.


2016 ◽  
Vol 842 ◽  
pp. 7-13 ◽  
Author(s):  
Ozi Adi Saputra ◽  
Ludfiaastu Rinawati ◽  
Kartika Setia Rini ◽  
Dheo Adha Saputra ◽  
Edi Pramono

The influence of fiber size on mechanical and water absorption properties of recycled Polypropylene/Palm Empty Fruit Bunch (namely, rPP/EFB) bio-composites has been conducted study. rPP/EFB bio-composite was a compounding of recycled polypropylene (rPP) and palm empty fruit bunch (EFB) with different sizes, i.e. particle size (150 mesh sieve escaped, referred as p-EFB) and short fiber (s-EFB). Manufacturing of the bio-composites was prepared by the solution method in boiling xylene via reactively process using benzoyl peroxide as an initiator. The addition of coupling agent, such as maleic anhydride grafted polypropylene (PP-g-MAH) was improve the chemical interaction between the rPP and EFB which evidenced by the shift of the wave number of raw materials on infra-red spectra of rPP/EFB bio-composite. Mechanical properties test showed that s-EFB was increase the tensile strength value up to 95% compare to rPP, higher than the p-EFB which is 56% compare to rPP. However, the elongation percentage of the bio-composites contain s-EFB was lower than the bio-composites contain p-EFB. Water absorption analysis also performed in this study to determine the biodegradability of bio-composites. In this study, fiber size gives a considerable influence on the mechanical properties of rPP/EFB bio-composites, however not significant on water absorption properties.


2013 ◽  
Vol 812 ◽  
pp. 187-191 ◽  
Author(s):  
Nur Izzati Zulkifli ◽  
Noorasikin Samat

Recycled polypropylene/microcrystalline cellulose (rPP/MCC) composites were prepared by adding different loadings of maleic anhydride grafted polypropylene (MAPP) coupling agent. The tensile, impact and morphological properties of the composites were investigated. The obtained results show that the tensile and impact strengths of the composites were significantly enhanced with the addition of MAPP loading from 2 to 5 wt%, as compared with unfilled rPP/MCC composites. However, it was found that at low filler content, different amounts of MAPP resulted in no appreciable change in the tensile strength and modulus. Moreover, dynamic mechanical analysis (DMA) results indicated that, increasing the amount of MAPP loading from 2 to 5 wt% in rPP/MCC provide better stiffness of the composite compared to those neat rPP and neat PP. Field emission scanning microscopy (FESEM) has shown that the composite, with MAPP loading, promotes better fibermatrix interaction.


2011 ◽  
Vol 194-196 ◽  
pp. 1839-1844 ◽  
Author(s):  
Yi Ming Sun ◽  
Dan Peng ◽  
Man Li

Ramie fibers were incorporated into polypropylene as the reinforcement fillers. The transesterification between the hydroxyl groups of ramie fiber and the ester of maleic anhydride was employed to improve the compatibility of ramie fibers and the polypropylene matrix. The morphology of the composite surfaces and interfaces were studied using IR and SEM. The mechanical properties and water absorption of the composites were investigated. The results demonstrated that the esterification occurred on the surface of ramie fiber, due to which the compatibility between fiber and matrix treated was greatly improved. Because of the improved compatibility, the mechanical strength of the composites increased; while water absorption decreased.


Sign in / Sign up

Export Citation Format

Share Document