Comparative Analysis on the Epoxidation of Soybean Oil using Formic and Acetic Acids

2018 ◽  
Vol 26 (4) ◽  
pp. 289-298 ◽  
Author(s):  
Shatori Meadows ◽  
Mahesh Hosur ◽  
Yusuf Celikbag ◽  
Shaik Jeelani

The objective of this study was to make a comparative analysis of the effect of formic and acetic acids as oxygen carriers on the epoxidation of soybean oil used with hydrogen peroxide as the oxygen donor. Comparative analysis between the use of formic acid (FA) and acetic acid (AA) was studied to obtain the most effective oxygen carrier that yielded high oxirane oxygen contents (OOC). The epoxidation reaction was carried out using a stoichiometric ratio of 1:0.5:1, 1:0.5:0.5, and 1:0.5:2 of soybean oil: formic/acetic acid: hydrogen peroxide. The synthesis was performed at three reaction times (2, 4 and 6 h) at a constant temperature of 50°C. Samples prepared using FA and AA were characterized using ASTM D1652-11 and confirmed by Fourier transform infrared (FTIR) spectroscopy. The result of this study proved FA to be an effective oxygen carrier compared to that of AA based on the high OOC and percent yield achieved. The optimum epoxidized soybean oil (ESO) sample using FA was obtained at a reaction time of 6 h using 2 moles of H2O2, yielding an OOC of 7.45 at a relative conversion to oxirane of 98%. Samples of FA were further characterized to prove the optimum parameters that gave the highest OOC using rheology and gel permeation chromatography (GPC). Rheology data revealed an increase in the viscosity that implied an increase in the degree of epoxidation. GPC indicated an increase in the molecular weight at low reaction times, then a decrease resulting in a change in the structure of the triglyceride and consequently an increase in the extent of epoxidation.

2012 ◽  
Vol 608-609 ◽  
pp. 1399-1406 ◽  
Author(s):  
Guang Yi Zhang ◽  
Ju Wei Zhang ◽  
Jian Yu ◽  
Yin Wang

To control the serious pollution caused by alkaline pulping in paper industry and utilize alkali lignin – the main organic ingredient residing in black liquor, an experimental research on hydrothermal oxidation of industrial alkali lignin for producing small molecule organic acids (mostly formic and acetic acids) was conducted using batch reactors. The results showed that the yields of acetic acid almost entirely increased and then decreased with oxygen supplies, reaction times and reaction temperatures, while the yields of formic acid fell in a narrow range of ~ 4% irrespective of all the hydrothermal conditions. A highest total yield of formic and acetic acids of 23.0% was achieved at the conditions of 300 °C, a 100% oxygen supply and a 60 s reaction time, and at the same time a highest yield of acetic acid of 20.3% was obtained. Based on the products recognized, the main pathways for producing small molecular organic acids, particularly formic and acetic acids were discussed.


Author(s):  
Ferra Naidir ◽  
Robiah Yunus ◽  
Irmawati Ramli ◽  
Tinia I. Mohd. Ghazi

To improve the oxidative stability of the palm oil-based biolubricant, the fatty acid double bonds in palm oil-based trimethylolpropane ester (TMP ester) was converted into an oxirane ring via an in-situ epoxidation method. The epoxidized TMP ester was produced from a reaction between TMP ester and peracetic acid which was prepared in-situ by reacting glacial acetic acid with hydrogen peroxide in the presence of concentrated sulphuric acid. The response surface methodology was applied using a central composite design technique to optimize the conditions of the epoxidation reaction to produce the epoxidized TMP ester. The effects of four independent variables namely concentration of acetic acid (0-2 mol), concentration of hydrogen peroxide (1.5-9.5 mol), temperature of reaction (30-110°C) and reaction time (0.5-26.5 h) on the three dependent variables; percentage of oxirane oxygen, iodine value, and hydroxyl value were studied. A second-order polynomial multiple regression model was employed to predict the three dependent variables under optimum conditions of 0.59 mol of glacial acetic acid, 7.5 mol of hydrogen peroxide concentration, at temperature of 50°C and reaction times of 7 h. The optimum values of percentage of oxirane oxygen, iodine value, and hydroxyl value were 4.01%, 1.94%, and 0.43% respectively. The analysis of variance yielded a high coefficient of determination value of 0.9395-0.9880, hence indicating the fitness of the second-order regression model to the experimental data.


2017 ◽  
Vol 6 (3) ◽  
pp. 28-33
Author(s):  
Yenni Listiana ◽  
Hilde Rosa Tampubolon ◽  
Mersi Suriani Sinaga

Epoxy is produced from an epoxidation of vegetable oil or natural oil with au nsaturated bond. Epoxy can be applied as a stabilizer, plasticizers in polyvinyl chloride (PVC) and can be used as an antioxidant in natural rubber processing, as a surfactant, anti-corrosive additive agent in lubricants and pesticide raw materials. The purpose of this research was to evaluate epoxy production from waste cooking oil. In this research, waste cooking oil was reacted with hexane as solvent, sulfuric acid as catalyst, glacial acetic acid and hydrogen peroxide. The catalyst concentration was varied from 1.5%, 2.1%, 2.5%, 3.1% and 3.5% and the epoxidation time was varied from 60, 120, 180, 240 and 300 min. The results showed that highest epoxy yield was achieved at reaction time of 300 min and 1.5% catalyst. At that condition, the iod number was 0,96 g I2/100 g WCO, oxirane oxygen content was 1.872 and oxirane oxygen conversion was 62.259%.


2017 ◽  
Vol 7 (4) ◽  
Author(s):  
Mehmat Deniz Turan ◽  
Musa Sarikaya ◽  
Z. Abidin Sari ◽  
Ahmet Haxhiaj ◽  
Tolga Depci ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 4713
Author(s):  
Carlos Arnaiz del Pozo ◽  
Schalk Cloete ◽  
Ángel Jiménez Álvaro ◽  
Felix Donat ◽  
Shahriar Amini

The hydrogen economy has received resurging interest in recent years, as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty, advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR), which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points, with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful, results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points, both in terms of efficiency and CO2 avoidance.


2021 ◽  
Vol 170 ◽  
pp. 113820
Author(s):  
Hong Liao ◽  
Jiaxin You ◽  
Peiyao Wen ◽  
Wenjun Ying ◽  
Qianqian Yang ◽  
...  

Author(s):  
Mousumi Chakraborty ◽  
Vaishali Umrigar ◽  
Parimal A. Parikh

The present study aims at assessing the effect of microwave irradiation against thermal heat on the production of N-acetyl-p-anisidine by acetylation of p-anisidine. The acetylation of p-anisidine under microwave irradiation produces N-acetyl-p-anisidine in shorter reaction times, which offers a benefit to the laboratories as well as industries. It also eliminates the use of excess solvent. Effects of operating parameters such as reaction time, feed composition, and microwave energy and reaction temperature on selectivity to the desired product have been investigated. The results indicate as high as a 98% conversion of N-acetyl-p-anisidine can be achieved within 12-15 minutes using acetic acid. The use of acetic acid as an acetylating agent against conventionally used acetic anhydride eliminates the handling of explosive acetic anhydride and also the energy intensive distillation step for separation of acetic acid. Organic solvent like acetic anhydride are not only hazardous to the environment, they are also expensive and flammable.


Sign in / Sign up

Export Citation Format

Share Document