Surface properties of chitosan/montmorillonite films for biomedical applications

2020 ◽  
pp. 096739112096843
Author(s):  
Shih-Hang Chang ◽  
Ming-Han Hsieh

In this study, we firstly investigated the surface and protein adsorption properties of montmorillonite (MMT)/chitosan (CS) composite films with various MMT/CS weight ratios for metallic implants coating applications. Bicinchoninic acid (BCA) protein assay results show that the neat CS film exhibits a high concentration of bovine serum albumin (BSA) protein adhesion because the abundant carbonyl and amide functional groups on the surface of the CS film easily form hydrogen bonds with the copious carboxylic acid groups on the surface of the BSA protein. The MMT/CS composite films with MMT/CS = 3, 5, 8, and 10 possess a much lower BSA adhesion concentration than that of the neat CS film, as some of the carbonyl and amide functional groups on the surface of the composite films are replaced by the –Si–O–Si and –Al–O–Al groups. Among these MMT/CS composite films, the film with MMT/CS = 5 exhibits the lowest BSA adsorption concentration because it possesses a higher MMT content than those with MMT/CS = 1 and 3 and a smoother and non-porous surface than those with MMT/CS = 8 and 10. According to our results, MMT/CS composite films with appropriate MMT/CS weight ratios exhibit better surface and protein adsorption properties than neat CS for biomedical applications.

2013 ◽  
Vol 1569 ◽  
pp. 79-84
Author(s):  
Duygu Ekinci ◽  
Adam L. Sisson ◽  
Andreas Lendlein

ABSTRACTNeutral, hydrophilic, polymer-based architectures are widely investigated for a wide range of biomedical applications from drug-conjugates to delivery systems and scaffolds for regenerative therapies. In most cases, it is crucial that biomaterials provide a blank, inert background in order to hinder unspecific cell-material interactions so that protein mediated biological events leading to foreign body reactions are prevented. Hydrophilic polyglycerol-based polymer network films are a recently developed class of amorphous macroscopic materials, which offer great versatility in design and control of resultant properties. In this study, protein adsorption on polyglycerol-based polymer network films is investigated by using Micro BCA protein assay for three types of proteins having critical roles in the human body, and various copolymer networks with differing sidechains and crosslink densities.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2527
Author(s):  
Monika Rojewska ◽  
Wojciech Smułek ◽  
Krystyna Prochaska ◽  
Ewa Kaczorek

Due to the increasing use of antibiotics, measures are being taken to improve their removal from the natural environment. The support of biodegradation with natural surfactants that increase the bioavailability of impurities for microorganisms that degrade them, raises questions about their effect on bacterial cells. In this paper we present analysis of the interaction of nitrofurantoin (NFT) and saponins from the Saponaria officinalis on the environmental bacteria membrane and the model phospholipid membrane mimicking it. A wide perspective of the process is provided with the Langmuir monolayer technique and membrane permeability test with bacteria. The obtained results showed that above critical micelle concentration (CMC), saponin molecules are incorporated into the POPE monolayer, but the NFT impact was ambiguous. What is more, differences in membrane permeability between the cells exposed to NFT in comparison to that of the non-exposed cells were observed above 1.0 CMC for Achromobacter sp. KW1 or above 0.5 CMC for Pseudomonas sp. MChB. In both cases, NFT presence lowered the membrane permeability. Moreover, the Congo red adhesion to the cell membrane also decreased in the presence of a high concentration of surfactants and NFT. The results suggest that saponins are incorporated into the bacteria membrane, but their sugar hydrophilic part remains outside, which modifies the adsorption properties of the cell surface as well as the membrane permeability.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Dinesh K. Patel ◽  
Yu-Ri Seo ◽  
Ki-Taek Lim

Stimuli-responsive materials, also known as smart materials, can change their structure and, consequently, original behavior in response to external or internal stimuli. This is due to the change in the interactions between the various functional groups. Graphene, which is a single layer of carbon atoms with a hexagonal morphology and has excellent physiochemical properties with a high surface area, is frequently used in materials science for various applications. Numerous surface functionalizations are possible for the graphene structure with different functional groups, which can be used to alter the properties of native materials. Graphene-based hybrids exhibit significant improvements in their native properties. Since functionalized graphene contains several reactive groups, the behavior of such hybrid materials can be easily tuned by changing the external conditions, which is very useful in biomedical applications. Enhanced cell proliferation and differentiation of stem cells was reported on the surfaces of graphene-based hybrids with negligible cytotoxicity. In addition, pH or light-induced drug delivery with a controlled release rate was observed for such nanohybrids. Besides, notable improvements in antimicrobial activity were observed for nanohybrids, which demonstrated their potential for biomedical applications. This review describes the physiochemical properties of graphene and graphene-based hybrid materials for stimuli-responsive drug delivery, tissue engineering, and antimicrobial applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiaomin Zhang ◽  
Jie Sun

Chitosan sulfate was prepared and characterized as a new chromatography media for protein separation. The degree of sulfonation of chitosan could be well controlled and impacted under conditions in the synthesis process. The prepared chitosan sulfate shows improved binding capacity with proteins. Sulfonated chitosan shows improved ion-exchange adsorption properties with proteins, which could have good potential in protein purification.


Sign in / Sign up

Export Citation Format

Share Document