scholarly journals Characterization of a Wild-Type Strain ofFrancisella TularensisIsolated from a Cat

2004 ◽  
Vol 16 (5) ◽  
pp. 374-381 ◽  
Author(s):  
Thomas J. Inzana ◽  
Gretchen E. Glindemann ◽  
Gerald Snider ◽  
Susan Gardner ◽  
Lisa Crofton ◽  
...  
1998 ◽  
Vol 180 (6) ◽  
pp. 1375-1380 ◽  
Author(s):  
Shu Ishikawa ◽  
Kunio Yamane ◽  
Junichi Sekiguchi

ABSTRACT The predicted amino acid sequence of Bacillus subtilis ycbQ (renamed cwlJ) exhibits high similarity to those of the deduced C-terminal catalytic domain of SleBs, the specific cortex-hydrolyzing enzyme of B. cereus and the deduced one of B. subtilis. We constructed acwlJ::lacZ fusion in the B. subtilischromosome. The β-galactosidase activity and results of Northern hybridization and primer extension analyses of the cwlJgene indicated that it is transcribed by EςE RNA polymerase. cwlJ-deficient spores responded to bothl-alanine and AGFK, the A 580 values of spore suspensions decreased more slowly than in the case of the wild-type strain, and the mutant spores released less dipicolinic acid than did those of the wild-type strain during germination. However, the mutant spores released only slightly less hexosamine than did the wild-type spores. In contrast, B. subtilis sleB spores did not release hexosamine at a significant level. While cwlJand sleB spores were able to germinate, CJSB (cwlJ sleB) spores could not germinate but exhibited initial germination reactions, e.g., partial decrease inA 580 and slow release of dipicolinic acid. CJSB spores became slightly gray after 6 h in the germinant, but their refractility was much greater than that of sleB mutant spores. The roles of the sleB and cwlJmutations in germination and spore maturation are also discussed.


2004 ◽  
Vol 50 (4) ◽  
pp. 183-188 ◽  
Author(s):  
Yuehua Chen ◽  
Yinyue Deng ◽  
Jinhong Wang ◽  
Jun Cai ◽  
Gaixin Ren

1990 ◽  
Vol 36 (1) ◽  
pp. 53-56 ◽  
Author(s):  
Anca Mihoc ◽  
Dieter Kluepfel

An intracellular β-1, 4-D-glucosidase (EC 3.2.1.21) was isolated from the mutant strain HP-3 of Streptomyces lividans 66 which produced about 12 times more enzyme than the wild-type strain. The purification was carried out by anion exchange column chromatography followed by high-performance liquid chromatography on DEAE and on molecular sieve columns. The enzyme is glycosylated and has an apparent Mr of 51 000 and a pI of 4.3. Its activity was optimal at pH 6.5 and at a temperature of 40 °C. The Km and the Vmax on cellobiose were 3.1 mM and 65.6 μmol min−1 mg−1 of enzyme. Key words: β-glucosidase, Streptomyces lividans, purification, characterization.


2001 ◽  
Vol 45 (12) ◽  
pp. 3574-3579 ◽  
Author(s):  
Brandie M. Jonas ◽  
Barbara E. Murray ◽  
George M. Weinstock

ABSTRACT We hypothesized that multidrug resistance efflux pumps (MDRs) may be contributing to the drug resistance of enterococci. We recently identified potential MDR-encoding genes in the Enterococcus faecalis V583 genome. Among the putative MDRs, we found a gene that encodes a NorA homolog and have characterized this enterococcal MDR in the present study. A mutant from which the enterococcal NorA homolog has been deleted has reduced resistance to several NorA substrates. Complementation of the deletion mutant with the wild-type gene verified the involvement of this enterococcal gene in resistance to ethidium bromide (EtBr) and norfloxacin. Known MDR inhibitors (reserpine, lansoprazole, and verapamil) inhibit the efflux of EtBr and norfloxacin in wild-type strain OG1RF. A fluorescence assay with EtBr allowed us to quantitate the efflux capability of the enterococcal NorA pump. On the basis of these results, we have named this enterococcal gene emeA (enterococcal multidrug resistance efflux).


1999 ◽  
Vol 67 (3) ◽  
pp. 1424-1431 ◽  
Author(s):  
Alison A. Weiss ◽  
Paula S. Mobberley ◽  
Rachel C. Fernandez ◽  
ChrisAnna M. Mink

ABSTRACT The Bordetella pertussis BrkA protein protects against the bactericidal activity of complement and antibody; however, some individuals mount an immune response that overcomes this bacterial defense. To further characterize this process, the bactericidal activities of sera from 13 adults with different modes of exposure toB. pertussis (infected as adults, occupational exposure, immunized with an acellular vaccine, or no identified exposure) against a wild-type strain and a BrkA complement-sensitive mutant were evaluated. All of the sera killed the BrkA mutant, suggesting past exposure to B. pertussis or cross-reactive organisms. Several samples had no or minimal activity against the wild type. All of the sera collected from the infected and occupationally exposed individuals but not all of the sera from vaccinated individuals had bactericidal activity against the wild-type strain, suggesting that some types of exposure can induce an immune response that can overcome the BrkA resistance mechanism. Adsorbing serum with the wild-type strain removed the bactericidal antibodies; however, adsorbing the serum with a lipopolysaccharide (LPS) mutant or an avirulent (bvg mutant) strain did not always result in loss of bactericidal activity, suggesting that antibodies to either LPS orbvg-regulated proteins could be bactericidal. All the samples, including those that lacked bactericidal activity, contained antibodies that recognized the LPS of B. pertussis. Bactericidal activity correlated best with the presence of the immunoglobulin G3 (IgG3) antibodies to LPS, the IgG subtype that is most effective at fixing complement.


1997 ◽  
Vol 10 (4) ◽  
pp. 454-461 ◽  
Author(s):  
X. Foissac ◽  
J. L. Danet ◽  
C. Saillard ◽  
P. Gaurivaud ◽  
F. Laigret ◽  
...  

Two hundred and fifty-seven transposon Tn4001 mutants of Spiroplasma citri strain GII3 were used for transmission assays by the leafhopper vector Circulifer haematoceps into periwinkle (Catharanthus roseus) plants. Multiplication of the mutants in the two hosts, the leafhopper and the plant, as well as the symptom expression in the plant were studied. Two mutants, GMT 470 and GMT 553, caused no symptoms on plants. Tn4001 is inserted as a single copy in the genome of these mutants. Mutant GMT 470 did not multiply, or multiplied only poorly, in the leaf-hopper and was not transmitted by the insect to the plant, nor to culture medium through Parafilm membrane. The growth rate of GMT 470 in SP4 medium was twice as slow as that of wild-type strain GII3. Mutant GMT 553 multiplied in the leafhopper as well as the wild-type spiro-plasma, and was transmitted by the leafhoppers into the plants, where it reached the same titers as the wild-type strain but in approximately twice as much time. The plants containing high titers of mutant GMT 553 remained symptomless for several weeks. However, symptoms began to develop at a time when revertants that had lost the transposon were detected.


2004 ◽  
Vol 51 (1) ◽  
pp. 253-262 ◽  
Author(s):  
Waltena Simpson ◽  
Teresa Olczak ◽  
Caroline A Genco

We have previously reported on the identification and characterization of the Porphyromonas gingivalis A7436 strain outer membrane receptor HmuR, which is involved in the acquisition of hemin and hemoglobin. We demonstrated that HmuR interacts with the lysine- (Kgp) and arginine- (HRgpA) specific proteases (gingipains) and that Kgp and HRgpA can bind and degrade hemoglobin. Here, we report on the physiological significance of the HmuR-Kgp complex in heme utilization in P. gingivalis through the construction and characterization of a defined kgp mutant and a hmuR kgp double mutant in P. gingivalis A7436. The P. gingivalis kgp mutant exhibited a decreased ability to bind both hemin and hemoglobin. Growth of this strain with hemoglobin was delayed and its ability to utilize hemin as a sole iron source was diminished as compared to the wild type strain. Inactivation of both the hmuR and kgp genes resulted in further decreased ability of P. gingivalis to bind hemoglobin and hemin, as well as diminished ability to utilize either hemin or hemoglobin as a sole iron source. Collectively, these in vivo results further confirmed that both HmuR and Kgp are involved in the utilization of hemin and hemoglobin in P. gingivalis A7436.


1985 ◽  
Vol 231 (3) ◽  
pp. 743-753 ◽  
Author(s):  
J Deistung ◽  
F C Cannon ◽  
M C Cannon ◽  
S Hill ◽  
R N F Thorneley

The nifF gene of Klebsiella pneumoniae was cloned into a multicopy plasmid in order to construct a strain that synthesizes and retains an elevated concentration of the gene product relative to the wild-type strain. Characterization of the isolated flavodoxin, which serves as an electron donor to nitrogenase, shows unambiguously that it is the product of the nifF gene.


1983 ◽  
Vol 41 (3) ◽  
pp. 271-286 ◽  
Author(s):  
A. M. Forsthoefel ◽  
N. C. Mishra

SUMMARYIsolation and characterization of five new nuclease (nuc) deficient mutants ofNeurosporahave been described. The new mutants are unable to utilize nucleic acids as the sole phosphorus source and possess growth characteristics similar to thosenuc(nuc-1andnuc-2) mutants described previously. Two new mutants (nuc-4andnuc-5) were able to use RNA or predigested DNA (but not intact DNA) as phosphorus source and showed temperature sensitive growth at 37 °C. Based on the data from complementation and genetic analyses the five new nuc mutants (nuc-3, nuc-4, nuc-5, nuc-6andnuc-7) were found nonallelic to each other and to previously describednuc(nuc-1andnuc-2) mutants; the newnucmutants mapped to the right ofarg-12on linkage group II. On biochemical analyses, thesenucmutants were found to possess a lower level of extracellular nucleases and alkaline phosphatase as compared to the wild type strain. The ds DNase activity of the new mutants was only about 2–12% of that of the wild type strain; thus, the low level of these extracellular enzymes in thenucmutants causes their inability to utilize nucleic acids as the sole phosphorus source. Wild type levels of these enzymes were restored in the complementing heterokaryons capable of full growth on the DNA medium. Data from intercrosses, mutagen sensitivity and spontaneous mutation-frequency studies (as discussed in a subsequent paper) indicated the involvement of thenucgenes in DNA repair and recombination.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Daniel A. Sáenz ◽  
Mónica S. Chianelli ◽  
Carlos A. Stella

We focused on the participation of GAP1, BAP2, and AGP1 in L-phenylalanine transport in yeast. In order to study the physiological functions of GAP1, BAP2, and AGP1 in L-phenylalanine transport, we examined the kinetics, substrate specificity, and regulation of these systems, employing isogenic haploid strains with the respective genes disrupted individually and in combination. During the characterization of phenylalanine transport, we noted important regulatory phenomena associated with these systems. Our results show that Agp1p is the major transporter of the phenylalanine in a gap1 strain growing in synthetic media with leucine present as an inducer. In a wild type strain grown in the presence of leucine, when ammonium ion was the nitrogen source, Bap2p is the principal phenylalanine carrier.


Sign in / Sign up

Export Citation Format

Share Document