Extended Frequency Bandwidth and Electrical Resonance Tuning in Hybrid Terfenol-D/PMN-PT Transducers in Mechanical Series Configuration

2005 ◽  
Vol 16 (9) ◽  
pp. 757-772 ◽  
Author(s):  
Patrick R. Downey ◽  
Marcelo J. Dapino
2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sannia Mareta ◽  
Dunant Halim ◽  
Atanas A. Popov

This work proposes a method for controlling vibration using compliant-based actuators. The compliant actuator combines a conventional actuator with elastic elements in a series configuration. The benefits of compliant actuators for vibration control applications, demonstrated in this work, are twofold: (i) vibration reduction over a wide frequency bandwidth by passive control means and (ii) improvement of vibration control performance when active control is applied using the compliant actuator. The vibration control performance is compared with the control performance achieved using the well-known vibration absorber and conventional rigid actuator systems. The performance comparison showed that the compliant actuator provided a better flexibility in achieving vibration control over a certain frequency bandwidth. The passive and active control characteristics of the compliant actuator are investigated, which shows that the control performance is highly dependent on the compliant stiffness parameter. The active control characteristics are analyzed by using the proportional-derivative (PD) control strategy which demonstrated the capability of effectively changing the respective effective stiffness and damping of the system. These attractive dual passive–active control characteristics are therefore advantageous for achieving an effective vibration control system, particularly for controlling the vibration over a specific wide frequency bandwidth.


2021 ◽  
Author(s):  
A. V. Ostankov ◽  
R. P. Krasnov ◽  
V. A. Kondusov ◽  
V. N. Povetko ◽  
I. I. Malyshev

2020 ◽  
pp. 53-58
Author(s):  
A. V. Koudelny ◽  
I. M. Malay ◽  
V. A. Perepelkin ◽  
I. P. Chirkov

The possibility of using bolometric converters of microwave power from the State primary standard of the unit of power of electromagnetic waves in waveguide and coaxial paths GET 167-2017, which has a frequency range from 37,5 to 78,33 GHz, in an extended frequency range up to 220 GHz, is shown. Studies of semiconductor bolometric converters of microwave power in an extended frequency range have confirmed good agreement and smooth frequency characteristics of the effective efficiency factor of the converters. Based on the research results, the State working standard of the unit of power of electromagnetic waves of 0,1–10 mW in the frequency range from 37,5 to 220 GHz 3.1.ZZT.0288.2018 was approved. The technical characteristics of the working standard of the unit of power of electromagnetic oscillations in an extended frequency range from 37,5 to 220 GHz are given.


Nanophotonics ◽  
2020 ◽  
Vol 9 (14) ◽  
pp. 4233-4252
Author(s):  
Yael Gutiérrez ◽  
Pablo García-Fernández ◽  
Javier Junquera ◽  
April S. Brown ◽  
Fernando Moreno ◽  
...  

AbstractReconfigurable plasmonics is driving an extensive quest for active materials that can support a controllable modulation of their optical properties for dynamically tunable plasmonic structures. Here, polymorphic gallium (Ga) is demonstrated to be a very promising candidate for adaptive plasmonics and reconfigurable photonics applications. The Ga sp-metal is widely known as a liquid metal at room temperature. In addition to the many other compelling attributes of nanostructured Ga, including minimal oxidation and biocompatibility, its six phases have varying degrees of metallic character, providing a wide gamut of electrical conductivity and optical behavior tunability. Here, the dielectric function of the several Ga phases is introduced and correlated with their respective electronic structures. The key conditions for optimal optical modulation and switching for each Ga phase are evaluated. Additionally, we provide a comparison of Ga with other more common phase-change materials, showing better performance of Ga at optical frequencies. Furthermore, we first report, to the best of our knowledge, the optical properties of liquid Ga in the terahertz (THz) range showing its broad plasmonic tunability from ultraviolet to visible-infrared and down to the THz regime. Finally, we provide both computational and experimental evidence of extension of Ga polymorphism to bidimensional two-dimensional (2D) gallenene, paving the way to new bidimensional reconfigurable plasmonic platforms.


2021 ◽  
Author(s):  
Jakob Isager Friis ◽  
Joana Sabino ◽  
Pedro Santos ◽  
Torben Dabelsteen ◽  
Gonçalo C. Cardoso

Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3165-3196 ◽  
Author(s):  
Joonkyo Jung ◽  
Hyeonjin Park ◽  
Junhyung Park ◽  
Taeyong Chang ◽  
Jonghwa Shin

AbstractMetamaterials can possess extraordinary properties not readily available in nature. While most of the early metamaterials had narrow frequency bandwidth of operation, many recent works have focused on how to implement exotic properties and functions over broad bandwidth for practical applications. Here, we provide two definitions of broadband operation in terms of effective material properties and device functionality, suitable for describing materials and devices, respectively, and overview existing broadband metamaterial designs in such two categories. Broadband metamaterials with nearly constant effective material properties are discussed in the materials part, and broadband absorbers, lens, and hologram devices based on metamaterials and metasurfaces are discussed in the devices part.


Sign in / Sign up

Export Citation Format

Share Document