The Allometry of Sound Frequency Bandwidth in Songbirds

2021 ◽  
Author(s):  
Jakob Isager Friis ◽  
Joana Sabino ◽  
Pedro Santos ◽  
Torben Dabelsteen ◽  
Gonçalo C. Cardoso
Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5519
Author(s):  
Pavel A. Nikitin ◽  
Vasily V. Gerasimov ◽  
Ildus S. Khasanov

The acousto-optic (AO) diffraction of terahertz (THz) radiation in liquefied sulfur hexafluoride (SF6) was investigated in various temperature regimes. It was found that with the increase in the temperature from +10 to +23∘C, the efficiency of the AO diffraction became one order higher at the same amplitude of the driving electrical signal. At the same time, the efficiency of the AO diffraction per 1 W of the sound power as well as the angular bandwidth of the efficient AO interaction were temperature independent within the measurement error. Increase of the resonant sound frequency with decreasing temperature and strong narrowing of the sound frequency bandwidth of the efficient AO interaction were detected.


2021 ◽  
Vol 141 ◽  
pp. 373-382
Author(s):  
Arezoo Keramati ◽  
Farshid Pajoum Shariati ◽  
Omid Tavakoli ◽  
Zahra Akbari ◽  
Mina Rezaei

Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3165-3196 ◽  
Author(s):  
Joonkyo Jung ◽  
Hyeonjin Park ◽  
Junhyung Park ◽  
Taeyong Chang ◽  
Jonghwa Shin

AbstractMetamaterials can possess extraordinary properties not readily available in nature. While most of the early metamaterials had narrow frequency bandwidth of operation, many recent works have focused on how to implement exotic properties and functions over broad bandwidth for practical applications. Here, we provide two definitions of broadband operation in terms of effective material properties and device functionality, suitable for describing materials and devices, respectively, and overview existing broadband metamaterial designs in such two categories. Broadband metamaterials with nearly constant effective material properties are discussed in the materials part, and broadband absorbers, lens, and hologram devices based on metamaterials and metasurfaces are discussed in the devices part.


2011 ◽  
Vol 497 ◽  
pp. 296-305
Author(s):  
Yasushi Yuminaka ◽  
Kyohei Kawano

In this paper, we present a bandwidth-efficient partial-response signaling scheme for capacitivelycoupled chip-to-chip data transmission to increase data rate. Partial-response coding is knownas a technique that allows high-speed transmission while using a limited frequency bandwidth, by allowingcontrolled intersymbol interference (ISI). Analysis and circuit simulation results are presentedto show the impact of duobinary (1+D) and dicode (1-D) partial-response signaling for capacitivelycoupled interface.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4351
Author(s):  
Alexandru Tatomirescu ◽  
Alina Badescu

This work presents the design for an antenna element that can be used in radio arrays for the monitoring and detecting of radio emissions from cosmic particles’ interactions in the atmosphere. For these applications, the pattern stability over frequency is the primary design goal. The proposed antenna has a high gain over a relative bandwidth of 88%, a beamwidth of 2.13 steradians, a small group delay variation and a very stable radiation pattern across the frequency bandwidth of 110 to 190 MHz. It is dual polarized and has a simple mechanical structure which is easy and inexpensive to manufacture. The measurements show that the ground has insignificant impact on the overall radiation pattern.


Geophysics ◽  
1988 ◽  
Vol 53 (3) ◽  
pp. 346-358 ◽  
Author(s):  
Greg Beresford‐Smith ◽  
Rolf N. Rango

Strongly dispersive noise from surface waves can be attenuated on seismic records by Flexfil, a new prestack process which uses wavelet spreading rather than velocity as the criterion for noise discrimination. The process comprises three steps: trace‐by‐trace compression to collapse the noise to a narrow fan in time‐offset (t-x) space; muting of the noise in this narrow fan; and inverse compression to recompress the reflection signals. The process will work on spatially undersampled data. The compression is accomplished by a frequency‐domain, linear operator which is independent of trace offset. This operator is the basis of a robust method of dispersion estimation. A flexural ice wave occurs on data recorded on floating ice in the near offshore of the North Slope of Alaska. It is both highly dispersed and of broad frequency bandwidth. Application of Flexfil to these data can increase the signal‐to‐noise ratio up to 20 dB. A noise analysis obtained from a microspread record is ideal to use for dispersion estimation. Production seismic records can also be used for dispersion estimation, with less accurate results. The method applied to field data examples from Alaska demonstrates significant improvement in data quality, especially in the shallow section.


2010 ◽  
Vol 519 (2) ◽  
pp. spc1-spc1 ◽  
Author(s):  
Douglas A. Storace ◽  
Nathan C. Higgins ◽  
Heather L. Read

Sign in / Sign up

Export Citation Format

Share Document