scholarly journals Optimal piezoelectric resistive–inductive shunt damping of plates with residual mode correction

2018 ◽  
Vol 29 (16) ◽  
pp. 3346-3370 ◽  
Author(s):  
Johan F Toftekær ◽  
Ayech Benjeddou ◽  
Jan Høgsberg ◽  
Steen Krenk

This work concerns vibration suppression of plates and plate-like structures by resonant piezoelectric damping, introduced by resistive–inductive shunts. The performance of this type of shunt damping relies on the precise calibration of the shunt frequency, where an important aspect is the ability to account for the energy spill-over from the non-resonant modes, not taken into account by most available calibration methods. A newly proposed calibration procedure includes this residual mode contribution by a quasi-dynamic modal correction, taking both flexibility and inertia effects of the non-resonant modes into account. In this work, this procedure is implemented in a finite element model combining Kirchhoff plate bending kinematics for the host structure and a plane stress assumption for a pair of bonded piezoceramic patches. The established model is verified by comparison with shunt calibrations from benchmark examples in the literature. As demonstrated by frequency response plots and the obtained damping ratios, the resistive–inductive shunt tuning is influenced by the effect of the non-resonant modes and omission may yield a significant detuning of the shunt circuit. Finally, an alternative method for precise evaluation of the effective (or generalized) electromechanical coupling coefficient is derived from the modal electromechanical equations of motion. This results in a new shunt tuning method, based on the effective electromechanical coupling coefficient obtained by the short- and open-circuit frequencies of the coupled piezo-plate structure.

2019 ◽  
Vol 30 (20) ◽  
pp. 3008-3024
Author(s):  
Mehmet Murat Gozum ◽  
Amirreza Aghakhani ◽  
Ipek Basdogan

The popularity of laminated composite plate-like structures is increasing in various engineering applications. Piezoelectric patches with electrical circuit elements can be integrated into these structures for shunt damping applications. For analyzing the shunt damping performance of these systems, precise modeling tools are required, which consider the two-way electromechanical coupling between the piezo-patches and the host plate. This study aims to identify the system parameters which affect the electromechanical coupling coefficient, a metric for measuring the effectiveness of mechanical-to-electrical energy conversion. For that purpose, a thorough investigation is performed to determine the critical system parameters and their combined effects on the electromechanical coupling coefficient of laminated composite plates with surface-bonded piezo-patches. First, the first four natural frequencies of the electromechanical system are obtained using the Rayleigh–Ritz method for various patch sizes. Then, the electromechanical coupling coefficient variations for a different set of system parameters are presented. Later, to demonstrate the applicability of the developed methodology for a broader frequency range, four independently shunted piezo-pairs are attached to the plate. The contours of electromechanical coupling coefficient values with respect to ply angle and patch-pair size are presented for the first four modes. Finally, the vibration amplitudes are successfully reduced for these modes using the optimal system parameters.


2016 ◽  
Vol 848 ◽  
pp. 339-343
Author(s):  
Xiao Kun Zhao ◽  
Bo Ping Zhang ◽  
Lei Zhao ◽  
Li Feng Zhu

The modified behavior of the phase transition temperatures (TO-T and/or TC) between orthorhombic (O), tetragonal (T) and cubic (C) that caused by doping Sb5+ in (Li0.052Na0.493K0.455)(Nb1-xSbx)O3 (LNKNSx) ceramics was reported in the present investigation. The results show that differing from the insensitive TO-T to the Sb5+ content, TC splits into two peaks TCI and TCII when doping Sb5+. The decreased TCI by raising x may be ascribed to the Sb-rich grains and the settled TCII round 480 °C resulting from the Sb-lack ones. The enhanced piezoelectric coefficient d33 value of 263 pC/N and planar mode electromechanical coupling coefficient kp value of 42.5% at x=0.052 can be attributed to the polymorphic phase boundary (PPB) behavior with an appropriate ratio between T and O phases without any second phase.


2018 ◽  
Vol 29 (20) ◽  
pp. 3949-3959 ◽  
Author(s):  
Adriane G Moura ◽  
Alper Erturk

We establish and analyze an analytical framework by accounting for both the piezoelectric and flexoelectric effects in bimorph cantilevers. The focus is placed on the development of governing electroelastodynamic piezoelectric–flexoelectric equations for the problems of resonant energy harvesting, sensing, and actuation. The coupled governing equations are analyzed to obtain closed-form frequency response expressions via modal analysis. The combined piezoelectric–flexoelectric coupling coefficient expression is identified and its size dependence is explored. Specifically, a typical atomistic value of the flexoelectric constant for barium titanate is employed in the model simulations along with its piezoelectric constant from the existing literature. It is shown that the effective electromechanical coupling of a piezoelectric material, such as barium titanate, is significantly enhanced for thickness levels below 100 nm. The electromechanical coupling coefficient of a barium titanate bimorph cantilever increases from the bulk piezoelectric value of 0.065 to the combined piezoelectric–flexoelectric value exceeding 0.3 toward nanometer thickness level. Electromechanical frequency response functions for resonant power generation and dynamic actuation also capture the size-dependent enhancement of the electromechanical coupling. The analytical framework given here can be used for parameter identification and design of nanoscale cantilevers that can be used as energy harvesters, sensors, and actuators.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7863
Author(s):  
Mehwish Hanif ◽  
Varun Jeoti ◽  
Mohamad Radzi Ahmad ◽  
Muhammad Zubair Aslam ◽  
Saima Qureshi ◽  
...  

Lately, wearable applications featuring photonic on-chip sensors are on the rise. Among many ways of controlling and/or modulating, the acousto-optic technique is seen to be a popular technique. This paper undertakes the study of different multilayer structures that can be fabricated for realizing an acousto-optic device, the objective being to obtain a high acousto-optic figure of merit (AOFM). By varying the thicknesses of the layers of these materials, several properties are discussed. The study shows that the multilayer thin film structure-based devices can give a high value of electromechanical coupling coefficient (k2) and a high AOFM as compared to the bulk piezoelectric/optical materials. The study is conducted to find the optimal normalised thickness of the multilayer structures with a material possessing the best optical and piezoelectric properties for fabricating acousto-optic devices. Based on simulations and studies of SAW propagation characteristics such as the electromechanical coupling coefficient (k2) and phase velocity (v), the acousto-optic figure of merit is calculated. The maximum value of the acousto-optic figure of merit achieved is higher than the AOFM of all the individual materials used in these layer structures. The suggested SAW device has potential application in wearable and small footprint acousto-optic devices and gives better results than those made with bulk piezoelectric materials.


Sign in / Sign up

Export Citation Format

Share Document