An experimental–numerical study on shape memory behavior of PU/PCL/ZnO ternary blend

2018 ◽  
Vol 30 (1) ◽  
pp. 116-126 ◽  
Author(s):  
M Abbasi-Shirsavar ◽  
M Baghani ◽  
M Taghavimehr ◽  
M Golzar ◽  
M Nikzad ◽  
...  

Shape memory polymer composites have attracted significant attention due to novel properties and great applications. In this article, we focus on the fabrication and simulation of polyurethane/polycaprolactone nanocomposites. The polyurethane/polycaprolactone blends containing ZnO nanoparticles (5 to 30 wt%) are fabricated using a solution mixing and casting method. It is found that significant improvement of polyurethane/polycaprolactone composites in Young’s modulus is achieved by incorporating 20 wt% of ZnO nanoparticles; also, the results of the shape recovery ratio reveal that adding an optimum amount of ZnO (the reinforcement) can increase the shape recovery ratio (for 20 wt% of ZnO). These results could most likely be explained by the fact that some particles restrict the hard segment–soft segment interactions and provide more mobility to polycaprolactone components, while the other nanoparticles can act as the nucleating agent for polycaprolactone chains. A generalized Maxwell model is then used to examine the shape memory behavior of shape memory polymer composites. The dynamic mechanical thermal analysis results are utilized to define the model coefficients and the simulation is carried out to determine the shape recovery ratio. Simulation of this shape recovery ratio for shape memory polymer composites reveals that the numerical results are in good agreement with those of the experimental data.

2020 ◽  
pp. 002199832095817
Author(s):  
Ibrahim Goda ◽  
Zakariya Zubair ◽  
Gildas L’Hostis ◽  
Jean-Yves Drean

Shape memory polymer (SMP) composites are attractive and excellent smart materials due to their outstanding properties and rich functionality as they combine typical mechanical and functional properties of composites with shape memory properties. In particular, 3D reinforced preforms have tremendous potential for the development of functional composites by using the capabilities of 3D woven fabric preform design, and polymer shape memory behavior. Within that scope, this work aims to investigate the shape memory behavior and shape recovery properties of a specific type of 3D multilayer woven SMP composite in response to external stimuli. For this purpose, nine different multilayer stitched fabrics are produced with different weave structures, and different fabric thread densities using polyimide filaments. Then, a series of tests is carried out on these fabrics to evaluate their mechanical and physical properties. The layered fabric design that delivers high mechanical performance is next involved to manufacture the SMP composite samples, for which shape recovery capability is investigated. Fold-deploy and other shape memory cycle tests are performed to evaluate the shape memory characteristics. An optical 3D scanner based on fringe projection is further proposed to precisely acquire the geometry data and perform deformation analysis to quantitatively evaluate the shape fixity and shape recovery behaviors. The results from this study are very promising, demonstrating that these multilayer SMP structures can successfully be recovered following the desired design constraints without noticeable damage.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1107
Author(s):  
Mijeong Kim ◽  
Seongeun Jang ◽  
Sungwoong Choi ◽  
Junghoon Yang ◽  
Jungpil Kim ◽  
...  

Shape memory polymers (SMPs) are attracting attention for their use in wearable displays and biomedical materials due to their good biocompatibility and excellent moldability. SMPs also have the advantage of being lightweight with excellent shape recovery due to their low density. However, they have not yet been applied to a wide range of engineering fields because of their inferior physical properties as compared to those of shape memory alloys (SMAs). In this study, we attempt to find optimized shape memory polymer composites. We also investigate the shape memory performance and physical properties according to the filler type and amount of hardener. The shape memory composite was manufactured by adding nanocarbon materials of graphite and non-carbon additives of Cu. The shape-recovery mechanism was compared, according to the type and content of the filler. The shape fixation and recovery properties were analyzed, and the physical properties of the shape recovery composite were obtained through mechanical strength, thermal conductivity and differential scanning calorimetry analysis.


Soft Matter ◽  
2018 ◽  
Vol 14 (22) ◽  
pp. 4558-4568 ◽  
Author(s):  
Ruiqing Wu ◽  
Jingjuan Lai ◽  
Yi Pan ◽  
Zhaohui Zheng ◽  
Xiaobin Ding

To enable shape-memory polymer networks to achieve recoverable high deformability with a simultaneous high shape-fixity ratio and shape-recovery ratio, novel semi-crystalline slide-ring shape-memory polycaprolactone-based polyurethane (SR-SMPCLU) with movable net-points constructed by a topologically interlocked slide-ring structure was designed and fabricated.


2013 ◽  
Vol 81 (4) ◽  
Author(s):  
Stephen Alexander ◽  
Rui Xiao ◽  
Thao D. Nguyen

This work investigated the effects of stiff inclusions on the thermoviscoelastic properties and recovery behavior of shape memory polymer composites. Recent manufacturing advances have increased the applicability and interest in SMPCs made with carbon and glass inclusions. The resulting biphasic material introduces changes to both the thermal and mechanical responses, which are not fully understood. Previous studies of these effects have been concerned chiefly with experimental characterization and application of these materials. The few existing computational studies have been constrained by the limitations of available constitutive models for the SMP matrix material. The present study applied previously developed finite-deformation, time-dependent thermoviscoelastic models for amorphous SMPs to investigate the properties and shape memory behavior of SMPCs with a hexagonal arrangement of hard inclusions. A finite element model of a repeating unit cell was developed for the periodic microstructure of the SMPC and used to evaluate the temperature-dependent viscoelastic properties, including the storage modulus, tan δ, coefficient of thermal expansion, and Young's modulus, as well as the shape recovery response, characterized by the unconstrained strain recovery response and the constrained recovery stress response. The presence of inclusions in greater volume fractions were shown to lower both the glass transition and recovery temperatures slightly, while substantially increasing the storage and Young's modulus. The inclusions also negligibly affected the unconstrained strain recovery rate, while decreasing the constrained recovery stress response. The results demonstrate the potential of using hard fillers to increase the stiffness and hardness of amorphous networks for structural application without significantly affecting the temperature-dependence and time-dependence of the shape recovery response.


2011 ◽  
Vol 410 ◽  
pp. 370-374 ◽  
Author(s):  
Jian Sun ◽  
Yan Yi Xu ◽  
Yi Jin Chen ◽  
Yan Ju Liu ◽  
Jin Song Leng

In this current study, spandex fiber with high elasticity and high recovery ratio were added into shape memory epoxy resin. Compared with pure shape memory resin, the Young’s modulus increases by 28.2%, tensile stress by 49.7% and fracture strain by 16.4% in samples with 20 vol% spandex fiber, while recover time reduces by 36s in samples with 40 vol% spandex fiber.


2021 ◽  
Vol 37 ◽  
pp. 636-650
Author(s):  
Wei-Hsuan Hsu ◽  
Chia-Wei Lin ◽  
Yi-Hung Chen ◽  
Shang-Ru Wu ◽  
Hung-Yin Tsai

Abstract In this study, the surface of the carbon nanotubes was modified by chemical functionalization. The carbon nanotubes were placed in a mixed acid solution with a nitric acid-to-sulfuric acid volume ratio of 1:3. The results of the functionalization of the carbon nanotubes were investigated by controlling the reaction time. From the experimental results, the functionalized carbon nanotubes with a reaction time of 12 hours show good dispersibility. In the study of the essential characteristics of composite materials, it was observed that the tensile strength decreased with increase of carbon nanotube content. Compared with the result of the tensile strength test, it can be found that with increasing carbon nanotube content, the microwave heating and shape recovery speed are greatly improved. The experimental results show that the shape memory polymer composite with 4 wt% carbon nanotubes has the fastest microwave heating rate, so it takes only 2 minutes to achieve complete shape recovery. Finally, this study used shape memory polymer composites doped with 4 wt% carbon nanotubes as the driving end, combined with an elastic structure made of polyimide (PI) film using origami techniques to form a worm actuator. In the test, the system could move a distance of 6 mm forward during a microwave time of 1 minute. In addition, this research also constructed a physical model of shape memory polymer and explored the simple movement mechanism of the system.


2010 ◽  
Vol 59 (6) ◽  
pp. 766-771 ◽  
Author(s):  
Haibao Lu ◽  
Kai Yu ◽  
Shouhua Sun ◽  
Yanju Liu ◽  
Jinsong Leng

2008 ◽  
Vol 47-50 ◽  
pp. 714-717 ◽  
Author(s):  
Xin Lan ◽  
Jin Song Leng ◽  
Yan Ju Liu ◽  
Shan Yi Du

A new system of thermoset styrene-based shape-memory polymer (SMP) filled with carbon black (CB) is investigated. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3% (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB(10 vol%) can be realized in about 100s. In addition, the thermomechanical properties are also characterized by differential scanning calorimetery (DSC).


Sign in / Sign up

Export Citation Format

Share Document