Flow Rate Variability from Selected syringe and Mobile Infusion Pumps

1988 ◽  
Vol 22 (9) ◽  
pp. 687-690 ◽  
Author(s):  
Elizabeth A. Farrington ◽  
Jill C. Stull ◽  
Richard D. Leff

Alterations in response to pharmacological agents have been attributed to flow rate variation produced by intravenous infusion devices during drug delivery. A wide range of variation has been shown to occur with large-volume infusion devices. The intent of this investigation was to examine flow variation resulting from the use of selected small-volume syringe and mobile infusion devices and determine whether these devices have greater flow continuity than large-volume infusion pumps. Each syringe and mobile infusion device delivered iv fluid at three flow rates (1, 5, and 10 ml/h). The effusate was collected in a tared beaker and serial weights were measured every ten seconds using a computerized, gravimetric technique. Accuracy, continuity, and pattern of flow were determined for each of the syringe and mobile infusion devices. All of the devices produced accurate flow, within ± 10 percent of the desired 5 and 10 ml/h rates. However, the actual iv flow rate ranged from 53 to 93 percent for the 1 ml/h rate. Continuity and pattern of flow resulting from each device were diverse. When compared with large-volume, microrate infusion devices, no significant differences could be observed. Therefore, no clear advantage to delivering drug solutions on a continuous basis can be expected from the use of small-volume devices. Specific infusion devices may be preferable for certain clinical applications; flow continuity data may be valuable when selecting an infusion device.

Author(s):  
Andjar Pudji Pudji ◽  
Anita Miftahul Maghfiroh ◽  
Nuntachai Thongpance

Infusion devices are the basis for primary health care, that is to provide medicine, nutrition, and hydration to patients. One of the infusion devices is a syringe pump and an infusion pump. This device is very important to assist the volume and flow that enters the patient's body, especially in situations related to neonatology or cancer treatment. Therefore, a comparison tool is needed to see whether the equipment is used or not. The purpose of this research is to make an infusion device analyzer (IDA) design with a flow rate parameter. The contribution of this research is that the tool can calculate the correct value of the flow rate that comes out of the infusion pump and syringe pump. The water released by the infusion pump or syringe pump will be converted into droplets which are then detected by the sensor. This tool uses an infrared sensor and a photodiode. The results obtained by the sensor will come by Arduino nano and code it to the 16x2 Character Liquid Crystal Display (LCD) and can be stored on an SD Card so that it can be analyzed further. In setting the flow rate for the syringe pump of 100 mL / hour, the error value is 3.9, 50 ml / hour 0.02, 20 mL / hour 0.378, 10 mL / hour 0.048, and 5 mL / hour 0.01. The results show that the average error of the syringe pump performance read by the module is 0.87. The results obtained from this study can be implemented for the calibration of the infusion pump and the syringe pump so that it can be determined whether the device is suitable or not


1994 ◽  
Vol 29 (3) ◽  
pp. 207-209 ◽  
Author(s):  
H. Puzicha

Effluents from point sources (industries, communities) and diffuse inputs introduce pollutants into the water of the river Rhine and cause a basic contaminant load. The aim is to establish a biological warning system to detect increased toxicity in addition to the already existing chemical-physical monitoring system. To cover a wide range of biocides, continuous working biotests at different trophic levels (bacteria, algae, mussels, water fleas, fishes) have been developed and proved. These are checked out for sensitivity against toxicants, reaction time, validity of data and practical handling under field conditions at the river. Test-specific appropriate methods are found to differentiate between the normal range of variation and true alarm signals.


2013 ◽  
Vol 9 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Kate Bak ◽  
Eric Gutierrez ◽  
Elizabeth Lockhart ◽  
Michael Sharpe ◽  
Esther Green ◽  
...  

The varied results of radiation exposure on infusion devices suggest that additional testing should be carried out to determine the limits of dose exposure, and to raise awareness around this patient safety issue.


2005 ◽  
Vol 127 (5) ◽  
pp. 1029-1037 ◽  
Author(s):  
L. O. Schunk ◽  
G. F. Nellis ◽  
J. M. Pfotenhauer

Growing interest in larger scale pulse tubes has focused attention on optimizing their thermodynamic efficiency. For Stirling-type pulse tubes, the performance is governed by the phase difference between the pressure and mass flow, a characteristic that can be conveniently adjusted through the use of inertance tubes. In this paper we present a model in which the inertance tube is divided into a large number of increments; each increment is represented by a resistance, compliance, and inertance. This model can include local variations along the inertance tube and is capable of predicting pressure, mass flow rate, and the phase between these quantities at any location in the inertance tube as well as in the attached reservoir. The model is verified through careful comparison with those quantities that can be easily and reliably measured; these include the pressure variations along the length of the inertance tube and the mass flow rate into the reservoir. These experimental quantities are shown to be in good agreement with the model’s predictions over a wide range of operating conditions. Design charts are subsequently generated using the model and are presented for various operating conditions in order to facilitate the design of inertance tubes for pulse tube refrigerators. These design charts enable the pulse tube designer to select an inertance tube geometry that achieves a desired phase shift for a given level of acoustic power.


Parasitology ◽  
1915 ◽  
Vol 8 (1) ◽  
pp. 11-16 ◽  
Author(s):  
L. E. Robinson

Variability in the size and, in a lesser degree, the taxonomic features of male ticks, has arrested the attention of all who have had occasion to examine moderately large numbers of examples of the same species. In the case of the female tick, this variability, though doubtless coextensive with that of the male, is more or less obscured by the wide range of variation in size, depending upon the degree of engorgement; and, also, by the fact that in the female tick the taxonomic characters are, as a rule, less pronounced. The present note is only concerned with variability in the size of the male.


1988 ◽  
Vol 15 (4) ◽  
pp. 313-318
Author(s):  
Anthony Stevens

During the last twenty years, the most enthusiastic advocates of the use of animal models in the study of human psychiatric dysfunction have been Harlow and Suomi. In an influential paper, Induced Depression in Monkeys (1974), they argued that more extensive use of non-human primates “would have great potential utility since many manipulations and measurements presently prohibited in human study by ethical and practical considerations could be readily performed on non-human primate subjects in well-controlled experimental environments.” Harlow & Suomi concluded this paper with the following statement: “The results obtained to date on induced depression in monkeys show that proper and profound depressions can be produced relatively easily by a variety of techniques. These induced depressions either bear a close resemblance to human depression or have such similarity as to suggest that closely correlated human and animal depressive patterns may be achieved with refined techniques. The results to date also provide adequate data for the conduct of meaningful researches on the effects of pharmacological agents which either enhance, inhibit or preclude the experimental production of depression. Further, the existence of firm and fast monkey depression syndromes offers vast opportunities for testing a wide range of therapeutic techniques, either behavioural or biochemical.”


1987 ◽  
Vol 109 (2) ◽  
pp. 150-155 ◽  
Author(s):  
M. P. Malkin ◽  
S. A. Klein ◽  
J. A. Duffie ◽  
A. B. Copsey

A modification to the f-Chart method has been developed to predict monthly and annual performance of thermosyphon solar domestic hot water systems. Stratification in the storage tank is accounted for through use of a modified collector loss coefficient. The varying flow rate throughout the day and year in a thermosyphon system is accounted for through use of a fixed monthly “equivalent average” flow rate. The “equivalent average” flow rate is that which balances the thermosyphon buoyancy driving force with the frictional losses in the flow circuit on a monthly average basis. Comparison between the annual solar fraction predited by the modified design method and TRNSYS simulations for a wide range of thermosyphon systems shows an RMS error of 2.6 percent.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Carl M. Sangan ◽  
James A. Scobie ◽  
Gary D. Lock

This paper deals with a numerical study aimed at the characterization of hot gas ingestion through turbine rim seals. The numerical campaign focused on an experimental facility which models ingress through the rim seal into the upstream wheel-space of an axial-turbine stage. Single-clearance arrangements were considered in the form of axial- and radial-seal gap configurations. With the radial-seal clearance configuration, CFD steady-state solutions were able to predict the system sealing effectiveness over a wide range of coolant mass flow rates reasonably well. The greater insight of flow field provided by the computations illustrates the thermal buffering effect when ingress occurs: for a given sealing flow rate, the effectiveness on the rotor was significantly higher than that on the stator due to the axial flow of hot gases from stator to rotor caused by pumping effects. The predicted effectiveness on the rotor was compared with a theoretical model for the thermal buffering effect showing good agreement. When the axial-seal clearance arrangement is considered, the agreement between CFD and experiments worsens; the variation of sealing effectiveness with coolant flow rate calculated by means of the simulations display a distinct kink. It was found that the “kink phenomenon” can be ascribed to an over-estimation of the egress spoiling effects due to turbulence modelling limitations. Despite some weaknesses in the numerical predictions, the paper shows that CFD can be used to characterize the sealing performance of axial- and radial-clearance turbine rim seals.


Sign in / Sign up

Export Citation Format

Share Document