scholarly journals The Effect of Immobilization Devices on Contact Pressures of the Ankle and Hindfoot

2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0040
Author(s):  
Niall A. Smyth ◽  
Pooyan Abbasi ◽  
Cesar de Cesar Netto ◽  
Stuart M. Michnick ◽  
Nicholas D. Casscells ◽  
...  

Category: Ankle, Hindfoot Introduction/Purpose: The tall Controlled Ankle Motion (CAM) boot and the short CAM boot are commonly used devices to immobilize the foot and ankle. These devices are preferably used instead of casts and splints as they are easily removed, allowing possible wound examination, personal hygiene, and therapeutic exercises. However, the effect of these devices on joint contact pressures is unknown. The aim of this study is to assess the effect of the tall CAM boot and short CAM boot on contact pressures of the ankle, subtalar, talonavicular, and calcaneocuboid joints. We hypothesize that both the tall CAM boot and short CAM boot will reduce contact pressures of the ankle and hindfoot joints, with the tall CAM boot having the greatest effect. Methods: Eight lower extremity cadaver specimens were mounted on a servohydraulic test frame. The specimens were loaded to 700 N at a cyclical frequency of 1 Hz with the posterior tibial, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and Achilles tendon physiologically tensioned. TekScan (TekScan, Boston, MA) pressure sensors were placed in the ankle, subtalar, talonavicular, and calcaneocuboid joints. In the sagittal plane, the specimens were loaded on a neutral surface, followed by 20o of dorsiflexion. Each specimen served as its own control, with contact pressures measured with no immobilization (control), followed by placement in a short CAM boot and tall CAM boot. In addition, contact pressures in the immobilized limbs were measured at muscle loads both equal to and half of the load applied to the control in order to account for decreased muscle activation during immobilization. Results: There was no difference in the average and peak contact pressures of the ankle, subtalar, talonavicular and calcaneocuboid joints when comparing the short CAM boot to no immobilization at equal tendon loads. The tall CAM boot significantly decreased average and peak contact pressures of the ankle, subtalar, and talonavicular joints when compared to no immobilization. The reduction in contact pressures was accentuated when the load applied to the tendons was decreased in accordance with diminished muscle activation during immobilization. Neither immobilization device decreased the contact pressures of the calcaneocuboid joint at equal tendon loads. Conclusion: Immobilization in a tall CAM boot decreases contact pressures of the ankle and hindfoot in both a neutral position and in dorsiflexion. A tall CAM boot should be used clinically if the goal of its use is to maximally reduce contact pressures of the ankle and hindfoot.

2020 ◽  
Vol 5 (2) ◽  
pp. 2473011420S0001
Author(s):  
Niall A. Smyth ◽  
Pooyan Abbasi ◽  
Cesar de Cesar Netto ◽  
Stuart M. Michnick ◽  
Nicholas Casscells ◽  
...  

Category: Basic Sciences/Biologics; Ankle; Hindfoot Introduction/Purpose: The tall Controlled Ankle Motion (CAM) boot and the short CAM boot are commonly used devices to immobilize the foot and ankle. However, the effect of these devices on joint contact pressures is unknown. The objective of this study is to assess the effect of the tall CAM boot and short CAM boot on contact pressures of the ankle, subtalar, talonavicular, and calcaneocuboid joints. We hypothesize that both the tall CAM boot and short CAM boot will reduce contact pressures of the ankle and hindfoot joints, with the tall CAM boot having the greatest effect. Methods: Eight lower extremity cadaver specimens were mounted on a servohydraulic test frame. The specimens were loaded to 700 N at a cyclical frequency of 1 Hz with the posterior tibial, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and Achilles tendon physiologically tensioned. TekScan (TekScan, Boston, MA) pressure sensors were placed in the ankle, subtalar, talonavicular, and calcaneocuboid joints. In the sagittal plane, the specimens were loaded on a neutral surface, followed by 20o of dorsiflexion. Each specimen served as its own control, with contact pressures measured with no immobilization (control), followed by placement in a short CAM boot and tall CAM boot. In addition, contact pressures in the immobilized limbs were measured at muscle loads both equal to and half of the load applied to the control in order to account for decreased muscle activation during immobilization. Results: There was no difference in the average and peak contact pressures of the ankle, subtalar, talonavicular and calcaneocuboid joints when comparing the short CAM boot to no immobilization at equal tendon loads. The tall CAM boot significantly decreased average and peak contact pressures of the ankle, subtalar, and talonavicular joints when compared to no immobilization. The tall CAM decreased the contact pressures of the talonavicular and subtalar joint to a greater degree than the ankle joint. The reduction in contact pressures was accentuated when the load applied to the tendons was decreased in accordance with diminished muscle activation during immobilization. Neither immobilization device decreased the contact pressures of the calcaneocuboid joint at equal tendon loads. Neither CAM boot changed the center of pressure of any joint. Conclusion: Immobilization in a tall CAM boot decreases contact pressures of the ankle and hindfoot in both a neutral position and in dorsiflexion. A tall CAM boot should be used clinically if the goal of its use is to maximally reduce contact pressures of the ankle and hindfoot. The tall CAM boot is better at reducing the contact pressures of the subtalar and talonavicular joint than the ankle joint.


1997 ◽  
Vol 18 (12) ◽  
pp. 792-797 ◽  
Author(s):  
Jennifer S. Wayne ◽  
Keith W. Lawhorn ◽  
Kenneth E. Davis ◽  
Karanvir Prakash ◽  
Robert S. Adelaar

Contact areas and peak pressures in the posterior facet of the subtalar and the talonavicular joints were measured in cadaver lower limbs for both the normal limb and after fixation of the tibiotalar joint. Six joints were fixed in neutral, in 5–7° of varus and of valgus. Ten degrees of equinus angulation was also studied. Each position of fixation was tested independently. Neutral was defined as fixation without coronal or sagittal plane angulation compared with prefixation alignment of the specimen. When compared with normal unfused condition, peak pressures increased, and contact areas decreased in the subtalar joint for specimens fixed in neutral, varus, and valgus. However, the change in peak pressure for neutral fusion compared with normal control was not statistically significant ( P > 0.07). Peak pressures for varus and valgus fixation were significantly different from normal ( P < 0.001). Contact areas for all positions of fixation were significantly different from normal ( P < 0.001). Coronal plane angulation, however, also resulted in significantly lower contact areas compared with neutral fixation ( P < 0.001). Contact areas and peak pressures in the talonavicular joint did not appear to be substantially affected by tibiotalar fixation with coronal plane angulation. Equinus fixation qualitatively increased contact areas and peak pressures in the talonavicular and posterior facet of the subtalar joint. Neutral alignment of the tibiotalar joint in the coronal and sagittal planes altered subtalar and talonavicular joint contact characteristics the least compared with normal controls. Therefore, ankle fusion in the neutral position would be expected to most closely preserve normal joint biomechanics and may limit the progression of degenerative arthrosis of the subtalar joint.


2021 ◽  
pp. 107110072110367
Author(s):  
Graham J. DeKeyser ◽  
Dillon C. O’Neill ◽  
Yantarat Sripanich ◽  
Amy L. Lenz ◽  
Charles L. Saltzman ◽  
...  

Background: Posterior talar body fractures are rare injuries without a consensus surgical approach. This study evaluates the accessible area of the talar dome through 2 posteromedial approach intervals (posteromedial [PM] and modified posteromedial [mPM]) both with and without distraction. Methods: Ten male cadaveric legs (5 matched pairs) were included. A PM approach, between flexor hallucis longus (FHL) and the tibial neurovascular bundle, and an mPM approach, between FHL and Achilles tendon, was performed on each pair. In total, 4 mm of distraction across the tibiotalar joint was applied with the foot held in neutral position. Accessible dome surface area (DSA) was outlined by drilling with a 1.6-mm Kirschner wire with and without distraction. Specimens were explanted and analyzed by micro–computed tomography with 3-dimensional reconstruction. Primary outcomes were total accessible DSA and sagittal plane access at predetermined intervals. Results: The PM approach allowed access to 19.1% of the talar DSA without distraction and 33.1% of the talar dome with distraction ( P < .001). The mPM approach provided access to 20.4% and 35.6% of the talar DSA without and with distraction ( P < .001). Both approaches demonstrated similar sagittal plane access at all intervals except the lateral border of the talus, where the mPM approach provided greater access both without distraction (20.5% vs 4.38%, P = .002) and with distraction (34.3% vs 17.8%, P = .02). Conclusion: The mPM approach, using an interval between FHL and Achilles tendon, provides similar access to the posterior surface of talar dome and better sagittal plane access to the most lateral portion of the dome. The mPM interval provides the advantage of avoiding direct dissection of the tibial nerve or posterior tibial artery. Using an external fixator for distraction can improve talar dome visualization substantially. Level of Evidence: Level V, Cadaveric Study.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Joshua E. Johnson ◽  
Phil Lee ◽  
Terence E. McIff ◽  
E. Bruce Toby ◽  
Kenneth J. Fischer

Joint injuries and the resulting posttraumatic osteoarthritis (OA) are a significant problem. There is still a need for tools to evaluate joint injuries, their effect on joint mechanics, and the relationship between altered mechanics and OA. Better understanding of injuries and their relationship to OA may aid in the development or refinement of treatment methods. This may be partially achieved by monitoring changes in joint mechanics that are a direct consequence of injury. Techniques such as image-based finite element modeling can provide in vivo joint mechanics data but can also be laborious and computationally expensive. Alternate modeling techniques that can provide similar results in a computationally efficient manner are an attractive prospect. It is likely possible to estimate risk of OA due to injury from surface contact mechanics data alone. The objective of this study was to compare joint contact mechanics from image-based surface contact modeling (SCM) and finite element modeling (FEM) in normal, injured (scapholunate ligament tear), and surgically repaired radiocarpal joints. Since FEM is accepted as the gold standard to evaluate joint contact stresses, our assumption was that results obtained using this method would accurately represent the true value. Magnetic resonance images (MRI) of the normal, injured, and postoperative wrists of three subjects were acquired when relaxed and during functional grasp. Surface and volumetric models of the radiolunate and radioscaphoid articulations were constructed from the relaxed images for SCM and FEM analyses, respectively. Kinematic boundary conditions were acquired from image registration between the relaxed and grasp images. For the SCM technique, a linear contact relationship was used to estimate contact outcomes based on interactions of the rigid articular surfaces in contact. For FEM, a pressure-overclosure relationship was used to estimate outcomes based on deformable body contact interactions. The SCM technique was able to evaluate variations in contact outcomes arising from scapholunate ligament injury and also the effects of surgical repair, with similar accuracy to the FEM gold standard. At least 80% of contact forces, peak contact pressures, mean contact pressures and contact areas from SCM were within 10 N, 0.5 MPa, 0.2 MPa, and 15 mm2, respectively, of the results from FEM, regardless of the state of the wrist. Depending on the application, the MRI-based SCM technique has the potential to provide clinically relevant subject-specific results in a computationally efficient manner compared to FEM.


2018 ◽  
Vol 7 (11) ◽  
pp. 456 ◽  
Author(s):  
Sandra Tavara-Vidalón ◽  
Manuel Monge-Vera ◽  
Guillermo Lafuente-Sotillos ◽  
Gabriel Domínguez-Maldonado ◽  
Pedro Munuera-Martínez

The first metatarsal and medial cuneiform form an important functional unit in the foot, called “first ray”. The first ray normal range of motion (ROM) is difficult to quantify due to the number of joints that are involved. Several methods have previously been proposed. Controversy exists related to normal movement of the first ray frontal plane accompanying that in the sagittal plane. The objective of this study was to investigate the ROM of the first ray in the sagittal and frontal planes in normal feet. Anterior-posterior radiographs were done of the feet of 40 healthy participants with the first ray in a neutral position, maximally dorsiflexed and maximally plantarflexed. They were digitalized and the distance between the tibial malleolus and the intersesamoid crest in the three positions mentioned was measured. The rotation of the first ray in these three positions was measured. A polynomic function that fits a curve describing the movement observed in the first ray was obtained using the least squares method. ROM of the first ray in the sagittal plane was 6.47 (SD 2.59) mm of dorsiflexion and 6.12 (SD 2.55) mm of plantarflexion. ROM in the frontal plane was 2.69 (SD 4.03) degrees of inversion during the dorsiflexion and 2.97 (SD 2.72) degrees during the plantarflexion. A second-degree equation was obtained, which represents the movement of the first ray. Passive dorsiflexion and plantarflexion of the first ray were accompanied by movements in the frontal plane: 0.45 degrees of movement were produced in the frontal plane for each millimeter of displacement in the sagittal plane. These findings might be useful for the future design of instruments for clinically quantifying first ray mobility.


Author(s):  
Andrew E. Anderson ◽  
Steve A. Maas ◽  
Benjamin J. Ellis ◽  
Jeffrey A. Weiss

Simplified analytical approaches to estimate hip joint contact pressures using perfectly spherical geometry have been described in the literature (rigid body spring models); however, estimations based on these simulations have not corresponded well with experimental in vitro data. Recent evidence from our laboratory suggests that finite element (FE) models of the hip joint that incorporate detailed geometry for cartilage and bone can predict cartilage pressures in good agreement with experimental data [1]. However, it is unknown whether this degree of model complexity is necessary. The objective of this study was to compare cartilage contact pressure predictions from FE models with varying degrees of simplicity to elucidate which aspects of hip morphology are required to obtain accurate predictions of cartilage contact pressure. Models based on 1) subject-specific (SS) geometry, 2) spheres, and 3) rotational conchoids were analyzed.


2009 ◽  
Vol 30 (8) ◽  
pp. 767-772 ◽  
Author(s):  
Dong Gil Lee ◽  
Brian L. Davis

Background: One of the more serious diabetic complications is Charcot neuroarthropathy (CN), a disease that results in arch collapse and permanent foot deformity. However, very little is known about the etiology of CN. From a mechanical standpoint, it is likely that there is a “vicious circle” in terms of (i) arch collapse causing increased midfoot joint pressures, and (ii) increased joint contact pressures exacerbating the collapse of midfoot bones. This study focused on assessment of peak joint pressure difference between diabetic and non-diabetic cadaver feet during simulated walking. We hypothesized that joint pressures are higher for diabetics than normal population. Materials and Methods: Sixteen cadaver foot specimens (eight control and eight diabetic specimens) were used in this study. Human gait at 25% of typical walking speed (averaged stance duration of 3.2s) was simulated by a custom-designed Universal Musculoskeletal Simulator. Four medial midfoot joint pressures (the first metatarsocuneiform, the medial naviculocuneiform, the middle naviculocuneiform, and the first intercuneiform) were measured dynamically during full stance. Results: The pressures in each of the four measured midfoot joints were significantly greater in the diabetic feet ( p = 0.015, p = 0.025, p < 0.001, and p = 0.545, respectively). Conclusion: Across all four tested joints, the diabetic cadaver specimens had, on average, 46% higher peak pressures than the control cadaver feet during the simulated stance phase. Clinical Relevance: This finding suggests that diabetic patients could be predisposed to arch collapse even before there are visible signs of bone or joint abnormalities.


2018 ◽  
Vol 4 (1) ◽  
pp. 203-205
Author(s):  
Mehdi Saeidi ◽  
Maziar Ramezani ◽  
Piaras Kelly ◽  
Mohd Sabri Hussin ◽  
Thomas Neitzert

AbstractThis research aimed to study the efficacy of a novel implant for osteoarthritic knees. This implant is designed to eliminate excessive loads through the knee and to provide suitable conditions for possible tibiofemoral cartilage regeneration. The implant was designed for the medial side of the knee joint. Finite Element Analysis (FEA) was performed for an extended knee position of the knee joint. Contact pressure distributions on the medial and lateral compartments were investigated as well as stress distributions throughout the implant’s plates. Results with and without the implant were compared, and it was seen that the contact pressures on the surface of the distal femur were reduced by more than 90% after the introduction of the implant.


2020 ◽  
Vol 41 (11) ◽  
pp. 1342-1346
Author(s):  
Kimberly K. Broughton ◽  
Caroline Williams ◽  
Christopher P. Miller ◽  
Kristen Stupay ◽  
John Y. Kwon

Background: In the setting of apparently isolated distal fibula fractures, the gravity stress view (GSV) is a validated method to determine mortise stability. There is currently no published data evaluating whether dynamic muscle activation can reduce an unstable mortise. If patients with instability can overcome gravity, resultant images could yield false-negative results. The goal of this investigation was to determine if patient effort can influence medial clear space (MCS) measurements in proven unstable bimalleolar-equivalent ankle fractures. Methods: Patients presenting with Weber B fibula fractures were assessed for mortise stability using the GSV. If the GSV demonstrated instability based on MCS widening >4 mm, 3 additional views were performed: GSV with an assistant maintaining the ankle in a neutral position; GSV with the patient actively dorsiflexing to neutral; and GSV with the patient actively dorsiflexing and supinating the foot. Twenty-four consecutive patients met inclusion criteria, with a mean age of 48.7 (range, 22-85) years. Fifteen patients (62.5%) were female and 9 (37.5%) were male. The laterality was evenly divided. Results: The mean MCS was 5.8 ± 2.0 6.0 ± 2.6, and 6.2 ± 2.7 mm for the manual assist, active dorsiflexion, and active supination radiograph measurement groups, respectively ( P = .434). Only 5 of 24 subjects had any measurable decrease in their MCS with active supination, with a maximum change of 1.2 mm. The remainder of the patients had an increase in MCS ranging from 0.1 to 4.0 mm. Conclusion: There was no significant difference between measurement states indicating that muscle activation is unlikely to yield a false-negative result on GSV. Mortise instability, secondary to deep deltoid injury in the presence of gravity stress, is unlikely to be actively overcome by dynamic stabilizers, supporting the validity and specificity of the GSV. Level of Evidence: Level III, prospective study.


2015 ◽  
Vol 2 (1) ◽  
pp. 129 ◽  
Author(s):  
Paul S. Sung

Background: Although co-activation of ankle muscles has been reported, relative ankle muscle activation in subjects with flat foot has not been carefully investigated. The aim of this study was to compare the relative activation index (RAI) on the tibialis anterior (TA) and medial gastrocnemius (GTN) muscles during active ankle range of motion (ROM) between subjects with and without flat foot. Methods: There were 17 subjects with flat foot and 17 age- and gender-matched control subjects who participated in this study. The RAI based on electromyography (EMG) was measured during the agonist phase at a controlled velocity of ankle motion (10°/second). The subject was seated upright with the tested foot held firmly onto a footplate that was attached to a torque sensor. The ankle being measured was strapped to the leg support of the Intel stretch device at 60° of knee flexion. The RAI was analyzed by the summation of EMG activity from the agonistic time window divided by the total EMG activity during full active ankle ROM. Results: The RAI was significantly different on the TA muscle (t = 3.08, P = 0.004), but no difference was found on the GTN muscle (t = -1.24, P = 0.23) in subjects with flat foot. There was an interaction between group and RAI (F =7.89, P = 0.007); however, the RAI demonstrated no interaction with age (F = 2.59, P = 0.14), height (F = 3.73, P = 0.06), or weight (F = 2.96, P = 0.09). Conclusions: The RAI indicated a lack of TA muscle activation in the flat foot group. Such dissociated activation in the flat foot group might be relevant to the inefficiency of synergistic motions. The relative activation of the agonistic phase needs to be further investigated to compare co-activation of synergistic muscle activation with various functional tasks. 


Sign in / Sign up

Export Citation Format

Share Document