scholarly journals Development of an Algorithm for Automatically Assessing Lifting Risk Factors Using Inertial Measurement Units

Author(s):  
Ming-Lun Lu ◽  
Shuo Feng ◽  
Grant Hughes ◽  
Menekse S. Barim ◽  
Marie Hayden ◽  
...  

The objective of this study was to develop an algorithm for automatically processing data collected with inertial measurement unit (IMU) wearable devices to measure lifting risk factors for low back disorders. Five IMU sensors attached to five body segments were used for developing the algorithm. The algorithm consists of two modules running in parallel for detecting the beginning and ending of a lifting event as well as the vertical height (V) of the object lifted by two hands and the horizontal (H) distance between the object and the body during the lift. The motion synchronization feature of wrists’ motion data were used to train the lifting detection module using a machine learning approach. This module achieved a training accuracy of 85%. In the second module, the forearm length and gyroscope data of four sensors are proposed for calculating trunk flexion angle, V and H during a lift.

Author(s):  
Menekse S. Barim ◽  
Ming-Lun Lu ◽  
Shuo Feng ◽  
Grant Hughes ◽  
Marie Hayden ◽  
...  

The objective of this study was to assess the accuracy of an algorithm for processing data from five inertial measurement unit (IMU) sensors for measuring the vertical distance (V) and horizontal distance (H) of two handed lifting, trunk flexion angle (T) and lifting duration (LD). The sensors were placed on five body segments including the left wrist, right wrist, upper arm of the dominant hand, upper back, and thigh of the dominant leg. A laboratory-grade optical motion capture system was used as the ground truth for the assessment. Data were collected on ten subjects that performed 12 two-handed lifting tasks varying in height of the hands and horizontal distance between the body and the lifted object. Results showed that the algorithm performed well for determining the LD (~1 sec error) and T (~2° error). The average errors for V and H were about 33 and 6.5 cm, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 798
Author(s):  
Hamed Darbandi ◽  
Filipe Serra Bragança ◽  
Berend Jan van der Zwaag ◽  
John Voskamp ◽  
Annik Imogen Gmel ◽  
...  

Speed is an essential parameter in biomechanical analysis and general locomotion research. It is possible to estimate the speed using global positioning systems (GPS) or inertial measurement units (IMUs). However, GPS requires a consistent signal connection to satellites, and errors accumulate during IMU signals integration. In an attempt to overcome these issues, we have investigated the possibility of estimating the horse speed by developing machine learning (ML) models using the signals from seven body-mounted IMUs. Since motion patterns extracted from IMU signals are different between breeds and gaits, we trained the models based on data from 40 Icelandic and Franches-Montagnes horses during walk, trot, tölt, pace, and canter. In addition, we studied the estimation accuracy between IMU locations on the body (sacrum, withers, head, and limbs). The models were evaluated per gait and were compared between ML algorithms and IMU location. The model yielded the highest estimation accuracy of speed (RMSE = 0.25 m/s) within equine and most of human speed estimation literature. In conclusion, highly accurate horse speed estimation models, independent of IMU(s) location on-body and gait, were developed using ML.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5004
Author(s):  
Haohao Hu ◽  
Johannes Beck ◽  
Martin Lauer ◽  
Christoph Stiller

The fusion of motion data is key in the fields of robotic and automated driving. Most existing approaches are filter-based or pose-graph-based. By using filter-based approaches, parameters should be set very carefully and the motion data can usually only be fused in a time forward direction. Pose-graph-based approaches can fuse data in time forward and backward directions. However, pre-integration is needed by applying measurements from inertial measurement units. Additionally, both approaches only provide discrete fusion results. In this work, we address this problem and present a uniform B-spline-based continuous fusion approach, which can fuse motion measurements from an inertial measurement unit and pose data from other localization systems robustly, accurately and efficiently. In our continuous fusion approach, an axis-angle is applied as our rotation representation method and uniform B-spline as the back-end optimization base. Evaluation results performed on the real world data show that our approach provides accurate, robust and continuous fusion results, which again supports our continuous fusion concept.


2021 ◽  
Vol 10 (9) ◽  
pp. 1804
Author(s):  
Jorge Posada-Ordax ◽  
Julia Cosin-Matamoros ◽  
Marta Elena Losa-Iglesias ◽  
Ricardo Becerro-de-Bengoa-Vallejo ◽  
Laura Esteban-Gonzalo ◽  
...  

In recent years, interest in finding alternatives for the evaluation of mobility has increased. Inertial measurement units (IMUs) stand out for their portability, size, and low price. The objective of this study was to examine the accuracy and repeatability of a commercially available IMU under controlled conditions in healthy subjects. A total of 36 subjects, including 17 males and 19 females were analyzed with a Wiva Science IMU in a corridor test while walking for 10 m and in a threadmill at 1.6 km/h, 2.4 km/h, 3.2 km/h, 4 km/h, and 4.8 km/h for one minute. We found no difference when we compared the variables at 4 km/h and 4.8 km/h. However, we found greater differences and errors at 1.6 km/h, 2.4 km/h and 3.2 km/h, and the latter one (1.6 km/h) generated more error. The main conclusion is that the Wiva Science IMU is reliable at high speeds but loses reliability at low speeds.


2013 ◽  
Vol 662 ◽  
pp. 717-720 ◽  
Author(s):  
Zhen Yu Zheng ◽  
Yan Bin Gao ◽  
Kun Peng He

As an inertial sensors assembly, the FOG inertial measurement unit (FIMU) must be calibrated before being used. The paper presents a one-time systematic IMU calibration method only using two-axis low precision turntable. First, the detail error model of inertial sensors using defined body frame is established. Then, only velocity taken as observation, system 33 state equation is established including the lever arm effects and nonlinear terms of scale factor error. The turntable experiments verify that the method can identify all the error coefficients of FIMU on low-precision two-axis turntable, after calibration the accuracy of navigation is improved.


Biosensors ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 109
Author(s):  
Binbin Su ◽  
Christian Smith ◽  
Elena Gutierrez Farewik

Gait phase recognition is of great importance in the development of assistance-as-needed robotic devices, such as exoskeletons. In order for a powered exoskeleton with phase-based control to determine and provide proper assistance to the wearer during gait, the user’s current gait phase must first be identified accurately. Gait phase recognition can potentially be achieved through input from wearable sensors. Deep convolutional neural networks (DCNN) is a machine learning approach that is widely used in image recognition. User kinematics, measured from inertial measurement unit (IMU) output, can be considered as an ‘image’ since it exhibits some local ‘spatial’ pattern when the sensor data is arranged in sequence. We propose a specialized DCNN to distinguish five phases in a gait cycle, based on IMU data and classified with foot switch information. The DCNN showed approximately 97% accuracy during an offline evaluation of gait phase recognition. Accuracy was highest in the swing phase and lowest in terminal stance.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5283 ◽  
Author(s):  
Gianmarco Baldini ◽  
Filip Geib ◽  
Raimondo Giuliani

The concept of Continuous Authentication is to authenticate an entity on the basis of a digital output generated in a continuous way by the entity itself. This concept has recently been applied in the literature for the continuous authentication of persons on the basis of intrinsic features extracted from the analysis of the digital output generated by wearable sensors worn by the subjects during their daily routine. This paper investigates the application of this concept to the continuous authentication of automotive vehicles, which is a novel concept in the literature and which could be used where conventional solutions based on cryptographic means could not be used. In this case, the Continuous Authentication concept is implemented using the digital output from Inertial Measurement Units (IMUs) mounted on the vehicle, while it is driving on a specific road path. Different analytical approaches based on the extraction of statistical features from the time domain representation or the use of frequency domain coefficients are compared and the results are presented for various conditions and road segments. The results show that it is possible to authenticate vehicles from the Inertial Measurement Unit (IMU) recordings with great accuracy for different road segments.


Author(s):  
Micaela Porta ◽  
Massimiliano Pau ◽  
Pier Francesco Orrù ◽  
Maury A. Nussbaum

Trunk flexion represents a risk factor for the onset of low-back disorders, yet limited quantitative data exist regarding flexion exposures in actual working conditions. In this study, we evaluated the potential of using a single inertial measurement unit (IMU) to classify trunk flexion, in terms of amplitude, frequency, and duration, and assessed the influence of alternative time durations on exposure results. Twelve warehouse workers were monitored during two hours of an actual shift while wearing a single IMU on their low back. Trunk flexion data were reduced using exposure variation analysis integrated with recommended exposure thresholds. Workers spent 5.1% of their working time with trunk flexion of 30–60° and 2.3% with flexion of 60–90°. Depending on the level of acceptable error, relatively shorter monitoring periods (up to 50 min) might be sufficient to characterize trunk flexion exposures. Future work is needed, however, to determine if these results generalize to other postural exposures and tasks.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5623
Author(s):  
Gabriella Fischer ◽  
Michael Alexander Wirth ◽  
Simone Balocco ◽  
Maurizio Calcagni

Background: This study investigates the dart-throwing motion (DTM) by comparing an inertial measurement unit-based system previously validated for basic motion tasks with an optoelectronic motion capture system. The DTM is interesting as wrist movement during many activities of daily living occur in this movement plane, but the complex movement is difficult to assess clinically. Methods: Ten healthy subjects were recorded while performing the DTM with their right wrist using inertial sensors and skin markers. Maximum range of motion obtained by the different systems and the mean absolute difference were calculated. Results: In the flexion–extension plane, both systems calculated a range of motion of 100° with mean absolute differences of 8°, while in the radial–ulnar deviation plane, a mean absolute difference of 17° and range of motion values of 48° for the optoelectronic system and 59° for the inertial measurement units were found. Conclusions: This study shows the challenge of comparing results of different kinematic motion capture systems for complex movements while also highlighting inertial measurement units as promising for future clinical application in dynamic and coupled wrist movements. Possible sources of error and solutions are discussed.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2983
Author(s):  
Marie Sapone ◽  
Pauline Martin ◽  
Khalil Ben Mansour ◽  
Henry Château ◽  
Frédéric Marin

The development of on-board sensors, such as inertial measurement units (IMU), has made it possible to develop new methods for analyzing horse locomotion to detect lameness. The detection of spatiotemporal events is one of the keystones in the analysis of horse locomotion. This study assesses the performance of four methods for detecting Foot on and Foot off events. They were developed from an IMU positioned on the canon bone of eight horses during trotting recording on a treadmill and compared to a standard gold method based on motion capture. These methods are based on accelerometer and gyroscope data and use either thresholding or wavelets to detect stride events. The two methods developed from gyroscopic data showed more precision than those developed from accelerometric data with a bias less than 0.6% of stride duration for Foot on and 0.1% of stride duration for Foot off. The gyroscope is less impacted by the different patterns of strides, specific to each horse. To conclude, methods using the gyroscope present the potential of further developments to investigate the effects of different gait paces and ground types in the analysis of horse locomotion.


Sign in / Sign up

Export Citation Format

Share Document