Reshaping Human Factors Education in Times of Big Data: Practitioner Perspectives

Author(s):  
Bella Yigong Zhang ◽  
Mark Chignell

Human Factors Engineering (HFE) is an applied discipline that uses a wide range of methodologies to better the design of systems and devices for human use. Underpinning all human factors design is the maxim to fit the human to the task/machine/system rather than vice versa. While some HFE methods such as task analysis and anthropometrics remain relatively fixed over time, areas such as human-technology interaction are strongly influenced by the fast-evolving technological trend. In times of big data, human factors engineers need to have a good understanding of topics like machine learning, advanced data analytics, and data visualization so that they can design data-driven products that involve big data sets. There is a natural lag between industrial trends and HFE curricula, leading to gaps between what people are taught and what they will need to know. In this paper, we present the results of a survey involving HFE practitioners (N=101) and we demonstrate the need for including data science and machine learning components in HFE curricula.

Author(s):  
Daniel Hannon ◽  
Esa Rantanen ◽  
Ben Sawyer ◽  
Raymond Ptucha ◽  
Ashley Hughes ◽  
...  

The explosion of data science (DS) in all areas of technology coupled with the rapid growth of machine learning (ML) techniques in the last decade create novel applications in automation. Many working with DS techniques rely on the concept of “black boxes” to explain how ML works, noting that algorithms find patterns in the data that humans might not. While the mathematics are still being developed, the implications for the application of ML, specifically to questions of automation, also are being studied, but still remain poorly understood. The decisions made by ML practitioners with respect to data selection, model training and testing, data visualization, and model applications remain relatively unconstrained and have the potential to yield unexpected results at the systems level. Unfortunately, human factors engineers concerned with automation often have limited training and awareness of DS and ML applications and are unable to provide the meaningful guidance that is needed to ensure the future safety of these newly emerging automated systems. Moreover, undergraduate and graduate programs in human factors engineering (HFE) have not kept pace with these developments and future HFEs may continue to find themselves unable to contribute meaningfully to the development of automated systems based on algorithms derived from ML. In this paper, human factors engineers and educators explore some of the challenges to our understanding of automation posed by specific ML techniques and contrast this with an outline of some of the historical work in HFE that has contributed to our understanding of safe and effective automation. Examples are provided from more conventional applications using both supervised and unsupervised learning techniques, that are explored with respect to implications for algorithm performance, use in system automation, and the potential for unintended results. Implications for human factors engineering education are discussed.


Psychology ◽  
2020 ◽  
Author(s):  
Jeffrey Stanton

The term “data science” refers to an emerging field of research and practice that focuses on obtaining, processing, visualizing, analyzing, preserving, and re-using large collections of information. A related term, “big data,” has been used to refer to one of the important challenges faced by data scientists in many applied environments: the need to analyze large data sources, in certain cases using high-speed, real-time data analysis techniques. Data science encompasses much more than big data, however, as a result of many advancements in cognate fields such as computer science and statistics. Data science has also benefited from the widespread availability of inexpensive computing hardware—a development that has enabled “cloud-based” services for the storage and analysis of large data sets. The techniques and tools of data science have broad applicability in the sciences. Within the field of psychology, data science offers new opportunities for data collection and data analysis that have begun to streamline and augment efforts to investigate the brain and behavior. The tools of data science also enable new areas of research, such as computational neuroscience. As an example of the impact of data science, psychologists frequently use predictive analysis as an investigative tool to probe the relationships between a set of independent variables and one or more dependent variables. While predictive analysis has traditionally been accomplished with techniques such as multiple regression, recent developments in the area of machine learning have put new predictive tools in the hands of psychologists. These machine learning tools relax distributional assumptions and facilitate exploration of non-linear relationships among variables. These tools also enable the analysis of large data sets by opening options for parallel processing. In this article, a range of relevant areas from data science is reviewed for applicability to key research problems in psychology including large-scale data collection, exploratory data analysis, confirmatory data analysis, and visualization. This bibliography covers data mining, machine learning, deep learning, natural language processing, Bayesian data analysis, visualization, crowdsourcing, web scraping, open source software, application programming interfaces, and research resources such as journals and textbooks.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Michael T. Tong

Abstract With the rise in big data and analytics, machine learning is transforming many industries. It is being increasingly employed to solve a wide range of complex problems, producing autonomous systems that support human decision-making. For the aircraft engine industry, machine learning of historical and existing engine data could provide insights that help drive for better engine design. This work explored the application of machine learning to engine preliminary design. Engine core-size prediction was chosen for the first study because of its relative simplicity in terms of number of input variables required (only three). Specifically, machine-learning predictive tools were developed for turbofan engine core-size prediction, using publicly available data of two hundred manufactured engines and engines that were studied previously in NASA aeronautics projects. The prediction results of these models show that, by bringing together big data, robust machine-learning algorithms and data science, a machine learning-based predictive model can be an effective tool for turbofan engine core-size prediction. The promising results of this first study paves the way for further exploration of the use of machine learning for aircraft engine preliminary design.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 335
Author(s):  
R Anandan ◽  
Srikanth Bhyrapuneni ◽  
K Kalaivani ◽  
P Swaminathan

Big Data Analytics and Deep Learning are two immense purpose of meeting of data science. Big Data has ended up being major a tantamount number of affiliations both open and private have been gathering huge measures of room specific information, which can contain enduring information about issues, for instance, national cognizance, motorized security, coercion presentation, advancing, and healing informatics. Relationship, for instance, Microsoft and Google are researching wide volumes of data for business examination and decisions, influencing existing and future progression. Critical Learning figuring's isolate odd state, complex reflections as data outlines through another levelled learning practice. Complex reflections are learnt at a given level in setting of all around less asking for thoughts figured in the past level in the dynamic framework. An indispensable favoured perspective of Profound Learning is the examination and culture of beast measures of unconfirmed data, making it a fundamental contraption for Great Statistics Analytics where offensive data is, everything seen as, unlabelled and un-arranged. In the present examination, we investigate how Deep Learning can be used for keeping an eye out for some essential issues in Big Data Analytics, including removing complex cases from Big volumes of information, semantic asking for, information naming, smart data recovery, and streamlining discriminative errands .Deep learning using Machine Learning(ML) is continuously unleashing its power in a wide range of applications. It has been pushed to the front line as of late mostly attributable to the advert of huge information. ML counts have never been remarkable ensured while tried by gigantic data. Gigantic data engages ML counts to uncover more fine-grained cases and make more advantageous and correct gauges than whenever in late memory with deep learning; on the other hand, it exhibits genuine challenges to deep learning in ML, for instance, show adaptability and appropriated enlisting. In this paper, we introduce a framework of Deep learning in ML on big data (DLiMLBiD) to guide the discussion of its opportunities and challenges. In this paper, different machine learning algorithms have been talked about. These calculations are utilized for different purposes like information mining, picture handling, prescient examination, and so forth to give some examples. The fundamental favourable position of utilizing machine learning is that, once a calculation realizes what to do with information, it can do its work consequently. In this paper we are providing the review of different Deep learning in text using Machine Learning and Big data methods.  


Author(s):  
Katherine Darveau ◽  
Daniel Hannon ◽  
Chad Foster

There is growing interest in the study and practice of applying data science (DS) and machine learning (ML) to automate decision making in safety-critical industries. As an alternative or augmentation to human review, there are opportunities to explore these methods for classifying aviation operational events by root cause. This study seeks to apply a thoughtful approach to design, compare, and combine rule-based and ML techniques to classify events caused by human error in aircraft/engine assembly, maintenance or operation. Event reports contain a combination of continuous parameters, unstructured text entries, and categorical selections. A Human Factors approach to classifier development prioritizes the evaluation of distinct data features and entry methods to improve modeling. Findings, including the performance of tested models, led to recommendations for the design of textual data collection systems and classification approaches.


Author(s):  
Anastasiia Ivanitska ◽  
Dmytro Ivanov ◽  
Ludmila Zubik

The analysis of the available methods and models of formation of recommendations for the potential buyer in network information systems for the purpose of development of effective modules of selection of advertising is executed. The effectiveness of the use of machine learning technologies for the analysis of user preferences based on the processing of data on purchases made by users with a similar profile is substantiated. A model of recommendation formation based on machine learning technology is proposed, its work on test data sets is tested and the adequacy of the RMSE model is assessed. Keywords: behavior prediction; advertising based on similarity; collaborative filtering; matrix factorization; big data; machine learning


Author(s):  
Aakriti Shukla ◽  
◽  
Dr Damodar Prasad Tiwari ◽  

Dimension reduction or feature selection is thought to be the backbone of big data applications in order to improve performance. Many scholars have shifted their attention in recent years to data science and analysis for real-time applications using big data integration. It takes a long time for humans to interact with big data. As a result, while handling high workload in a distributed system, it is necessary to make feature selection elastic and scalable. In this study, a survey of alternative optimizing techniques for feature selection are presented, as well as an analytical result analysis of their limits. This study contributes to the development of a method for improving the efficiency of feature selection in big complicated data sets.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Marcos Fabietti ◽  
Mufti Mahmud ◽  
Ahmad Lotfi

AbstractAcquisition of neuronal signals involves a wide range of devices with specific electrical properties. Combined with other physiological sources within the body, the signals sensed by the devices are often distorted. Sometimes these distortions are visually identifiable, other times, they overlay with the signal characteristics making them very difficult to detect. To remove these distortions, the recordings are visually inspected and manually processed. However, this manual annotation process is time-consuming and automatic computational methods are needed to identify and remove these artefacts. Most of the existing artefact removal approaches rely on additional information from other recorded channels and fail when global artefacts are present or the affected channels constitute the majority of the recording system. Addressing this issue, this paper reports a novel channel-independent machine learning model to accurately identify and replace the artefactual segments present in the signals. Discarding these artifactual segments by the existing approaches causes discontinuities in the reproduced signals which may introduce errors in subsequent analyses. To avoid this, the proposed method predicts multiple values of the artefactual region using long–short term memory network to recreate the temporal and spectral properties of the recorded signal. The method has been tested on two open-access data sets and incorporated into the open-access SANTIA (SigMate Advanced: a Novel Tool for Identification of Artefacts in Neuronal Signals) toolbox for community use.


2018 ◽  
Vol 15 (3) ◽  
pp. 497-498 ◽  
Author(s):  
Ruth C. Carlos ◽  
Charles E. Kahn ◽  
Safwan Halabi

Sign in / Sign up

Export Citation Format

Share Document