Modal Analysis of Random Vibrating Systems From Multi- Output Data

2001 ◽  
Vol 7 (3) ◽  
pp. 339-363 ◽  
Author(s):  
J. Lardies ◽  
N. Larbi
1995 ◽  
Vol 48 (11S) ◽  
pp. S107-S110
Author(s):  
Peter Hagedorn ◽  
Ulrich Pabst

In many cases, vibrating mechanical systems permit a reliable mathematical modeling with parameter values which are reasonably well known beforehand, except for the joints between different subsystems and at the boundaries. The boundary stiffness, which is often assumed as infinite, and the damping at the boundary, which is frequently ignored, are typically not well known. In this note, we discuss the identification of the boundary stiffness and damping parameters from modal data. As an example, we treat an elastic steel beam, for which an experimental modal analysis had been carried out in our laboratory.


Author(s):  
S. Bellizzi ◽  
Rubens Sampaio

In this paper, the Smooth Orthogonal Decomposition is formulated in term of a Smooth Karhunen-Loe`ve Decomposition (SKLD) to analyze random fields. The SKLD is obtained solving a generalized eigenproblem defined from the covariance matrix of the random field and the covariance matrix of the associated time derivative random field. The main properties of the SKLD are described and compared to the classical Karhunen-Loe`ve decomposition. The SKLD is then applied to the responses of randomly excited vibrating systems with a view to performing modal analysis. The associated SKLD characteristics are interpreted in case of linear vibrating systems subjected to white noise excitation in terms of normal modes. Discrete and continuous mechanical systems are considered in this study.


1986 ◽  
Vol 108 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Claus-Peter Fritzen

A procedure is presented to calculate the mass, damping, and stiffness matrices of mechanical systems from measured input/output data. It works on the basis of the Instrumental Variable Method which is well suited for the estimation of models from data with superimposed measurement noise. Noise is present in many practical cases. The theory of the method is described with regard to vibrating systems. The first application is the estimation of the matrices of a simulated system where the noise level is varied. The results show the expected properties: less sensitivity to noise compared to the Least Squares Method. Furthermore, the procedure is applied to a real system.


Author(s):  
Klaus-Ruediger Peters

Differential hysteresis processing is a new image processing technology that provides a tool for the display of image data information at any level of differential contrast resolution. This includes the maximum contrast resolution of the acquisition system which may be 1,000-times higher than that of the visual system (16 bit versus 6 bit). All microscopes acquire high precision contrasts at a level of <0.01-25% of the acquisition range in 16-bit - 8-bit data, but these contrasts are mostly invisible or only partially visible even in conventionally enhanced images. The processing principle of the differential hysteresis tool is based on hysteresis properties of intensity variations within an image.Differential hysteresis image processing moves a cursor of selected intensity range (hysteresis range) along lines through the image data reading each successive pixel intensity. The midpoint of the cursor provides the output data. If the intensity value of the following pixel falls outside of the actual cursor endpoint values, then the cursor follows the data either with its top or with its bottom, but if the pixels' intensity value falls within the cursor range, then the cursor maintains its intensity value.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020100
Author(s):  
Nasser Heydari ◽  
Panayiotis Diplas ◽  
J. Nathan Kutz ◽  
Soheil Sadeghi Eshkevari

2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


Sign in / Sign up

Export Citation Format

Share Document