The effective frequency range of an active suspended handle based on the saturation effects of a piezo stack actuator

2016 ◽  
Vol 23 (5) ◽  
pp. 752-769 ◽  
Author(s):  
Ahmad Zhafran Ahmad Mazlan ◽  
Zaidi Mohd Ripin

This paper presents a novel approach to the design of an active suspended handle by identifying the effective frequency range, based on the saturation effects of the piezo stack actuator, in terms of the force-displacement-voltage relationship as a function of the excitation frequency. The effective range allows for proper matching between the operating speed of the machine and the suspended handle. A model of the active suspended handle was developed, which took into account the non-linear saturation effect of the piezo stack actuator. A proportional-integral-derivative controller generated the counter voltage for the piezo stack actuator, using a proportional feedback gain (P) step up method, in order to attenuate the vibration transmitted to the handle. By including the saturation effect, the Pearson’s correlation coefficient ( R2) of the model improved to 0.97, within the frequency range of 50 ∼ 500 Hz. Using this approach, we identified that the effective frequency range of isolation with transmissibility less than unity is between 250 ∼ 450 Hz. The active suspended handle was attached to a die grinder with a nominal operating speed of 25000 rpm and the vibration transmitted from the die grinder to the handle was reduced by 91%.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ying Yan ◽  
Gengping Li ◽  
Jinjun Tang ◽  
Zhongyin Guo

Operating speed is a critical indicator for road alignment consistency design and safety evaluation. Although extensive studies have been conducted on operating speed prediction, few models can finish practical continuous prediction at each point along alignment on multilane highways. This study proposes a novel method to estimate the operating speed for multilane highways in China from the aspect of the three-dimensional alignment combination. Operating speed data collected in field experiments on 304 different alignment combination sections are detected by means of Global Positioning System. First, the alignment comprehensive index (ACI) is designed and introduced to describe the function accounting for alignment continuity and driving safety. The variables used in ACI include horizontal curve radius, change rate of curvature, deflection angle of curve, grade, and lane width. Second, the influence range of front and rear alignment on speed is determined on the basis of drivers’ fixation range and dynamical properties of vehicles. Furthermore, a prediction model based on exponential relationships between road alignment and speeds is designed to predict the speed of passenger cars and trucks. Finally, three common criteria are utilized to evaluate the effectiveness of the prediction models. The results indicate that the prediction models outperform the other two operating speed models for their higher prediction accuracy.


2021 ◽  
Author(s):  
Stefan Bracke ◽  
Lars Grams

Since December 2019, the world is confronted with the outbreak of the respiratory disease COVID-19. At the beginning of 2020, the COVID-19 epidemic evolved into a pandemic, which continues to this day. Within many countries, several control strategies or combinations of them, like restrictions (e.g. lockdown actions), medical care (e.g. development of vaccine or medicaments) and medical prevention (e.g. hygiene concept), were established with the goal to control the pandemic. Depending on the chosen control strategy, the COVID-19 spreading behavior slowed down or approximately stopped for a defined time range. This phenomenon is called saturation effect and can be described by saturation models: E.g. a fundamental approach is Verhulst (1838). The model parameter allows the interpretation of the spreading speed (growth) and the saturation effect in a sound way. This paper shows results of a research study of the COVID-19 spreading behavior and saturation effects depending on different pandemic control strategies in different countries and time phases based on Johns Hopkins University data base (2020). The study contains the analyzing of saturation effects related to short time periods, e.g. possible caused by lockdown strategies, geographical influences and medical prevention activities. The research study is focusing on reference countries like Germany, Japan, Denmark, Iceland, Ireland and Israel.


Author(s):  
Davide Castagnetti

Energy harvesting from kinetic ambient energy requires converters able to efficiently operate in the low frequency range. A limit of the solutions proposed in the literature, both electromagnetic and piezoelectric, is their operating frequency, which generally ranges from about 50 to 300 Hz. To overcome these limitations, this work proposes an innovative energy harvester exploiting two counteracting Belleville springs. Thanks to the peculiar height to thickness ratio of the springs a highly compliant elastic system is obtained, which can be used either for electromagnetic or piezoelectric harvesting. The harvester is modelled analytically and numerically both with regard to the force-displacement and to the modal response. The experimental validation of the harvester, highlights a noticeable power output but at a higher eigenfrequency than expected.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Xiaojian Wu ◽  
Xiang Qiu ◽  
Bing Zhou ◽  
Juhua Huang ◽  
Tingfang Zhang

The parameter sensitivity analysis of a hydraulically interconnected suspension (HIS) system shows that the sensitivity of the vibration responses in the bounce and roll modes to the hydraulic parameters are complementary. A novel HIS-based semiactive control method was thereby proposed to improve ride comfort and antiroll performance. In addition, the classic sky-hook max-min damping switched strategy provides significant benefits around the body resonance, but otherwise performs similarly to, or sometimes even worse than, passive suspension. Therefore, a dual-frequency-range switching strategy, which has optimal max-min damping in both frequency ranges, was developed for improving the ride comfort in a wider frequency bandwidth. In this study, a 9-DOF HIS system dynamics model was established, and the hydraulically interconnected subsystem model was validated experimentally. Subsequently, the elastic and damping characteristics of the hydraulically interconnected subsystem, as well as the parameter sensitivity in bounce mode and roll mode, were analyzed. Next, the sensitive parameters were optimized under sinusoidal excitation at various frequencies, and a frequency-range selector used to determine the excitation frequency range and adjust the shock absorber damping was designed. Finally, simulations in the frequency domain and time domain show that the proposed HIS-based semiactive dual-frequency-range switching control suspension improves the ride comfort in a wider frequency bandwidth and enhances the antiroll performance in the transient and steady steering process.


2019 ◽  
Vol 11 (1) ◽  
pp. 75 ◽  
Author(s):  
Jinxing Li ◽  
Min Zhang ◽  
Ye Zhao ◽  
Wangqiang Jiang

A full-polarized facet based scattering model (FPFSM) for investigating the electromagnetic (EM) scattering by two-dimensional electrically large sea surfaces with high efficiency at high microwave bands is proposed. For this method, the scattering field over a large sea facet in a diffuse scattering region is numerically deduced according to the Bragg scattering mechanism. In regard to near specular directions, a novel approach is proposed to calculate the scattered field from a sea surface based on the second order small slope approximation (SSA-II), which saves computer memory considerably and is able to analyze the EM scattering by electrically large sea surfaces. The feasibility of this method in evaluating the radar returns from the sea surface is proved by comparing the normalized radar cross sections (NRCS) and the Doppler spectrum with the SSA-II. Then NRCS results in monostatic and bistatic configurations under different polarization states, scattering angles and wind speeds are analyzed as well as the Doppler spectrum at Ka-band. Numerical results show that the FPFSM is a reliable and efficient method to analyze the full-polarized scattering characteristics from electrically large sea surface within a wide frequency range.


Sign in / Sign up

Export Citation Format

Share Document