A new model of a hydraulic leveraged dynamic anti-resonance vibration isolator under base excitation: A theoretical and experimental study

2019 ◽  
Vol 25 (16) ◽  
pp. 2282-2292 ◽  
Author(s):  
Niuniu Liu ◽  
Zeyu Jin ◽  
Hongxing Hua

Two models have previously been commonly used to predict the isolation performance of a hydraulic leveraged dynamic anti-resonance vibration isolator. The models have deficiencies, however, in considering the volumetric stiffness of the isolator. In this paper, a new model is proposed to improve the accuracy by reasonably taking the volumetric stiffness into consideration. The model is validated by a carefully designed experiment. The influence of the volumetric stiffness on the isolation performance of the isolator is investigated by the validated model. The results indicate that the volumetric stiffness of the isolator and its location in a mathematical model have a significant influence on the isolation frequency and the second natural frequency of the isolator. The dependence of the volumetric stiffness on the isolation frequency, the attenuation capacity at the isolation frequency, and the bandgap of the isolator is presented. The investigation will enhance the understanding of the hydraulic leveraged dynamic anti-resonance vibration isolator, and facilitate the design and exploitation of this type of isolator in the field of vibration isolation.

2022 ◽  
pp. 107754632110514
Author(s):  
Sivakumar Solaiachari ◽  
Jayakumar Lakshmipathy

In this study, a new type of vibration isolator based on fluidic actuators and a composite slab was tested experimentally with an unbalanced disturbance. Quasi-zero stiffness vibration isolation techniques are advanced and provide effective isolation performance for non-nominal loads. The isolation performance of the proposed isolator was compared to that of a nonlinear vibration isolator equipped with fluidic actuators and a mechanical coil spring (NLVIFA). The NLVIFA system is better suited to non-nominal loads; however, the mechanical spring axial deflection leads to limited amplitude reduction in the system. To address this issue, a cross buckled slab was developed to replace a mechanical coil spring for absorbing vertical deflection by transverse bending, which is made of a specially developed composite material of Basalt fiber reinforced with epoxy resin and enhanced with graphene nano pellets. This current study was concerned with the theoretical analysis and experimental investigations of the proposed nonlinear vibration isolator with fluidic actuators and composite material (NLVIFA-CM), which performs under quasi-zero stiffness characteristics. Because of its reduced axial deflection, the theoretical and experimental results show that the NLVIFA-CM system outperforms the NLVIFA system and other linear type vibration isolators in terms of isolation performance. Furthermore, the proposed vibration isolator makes a significant contribution to low-frequency vibration.


2019 ◽  
Vol 25 (19-20) ◽  
pp. 2667-2677 ◽  
Author(s):  
Zhenhua Zhou ◽  
Shuhan Chen ◽  
Dun Xia ◽  
Jianjun He ◽  
Peng Zhang

A negative stiffness element is always employed to generate high-static–low-dynamic stiffness characteristic of the vibration isolator, reduce the resonance frequency of the isolator, and improve the vibration isolation performance under low and ultra-low frequency excitation. In this paper, a new compact negative stiffness permanent magnetic spring (NSPMS) that is composed of two axial-magnetized permanent magnetic rings is proposed. An analytical expression of magnetic negative stiffness of the NSPMS is deduced by using the Coulombian model. After analyzing the effect of air-gap width, air-gap position, height difference between the inner ring and outer ring on the negative stiffness characteristic, a design procedure is proposed to realize the negative stiffness characteristic with a global minimum linear component and uniformity stiffness near the equilibrium position. Finally, an experimental prototype is developed to validate the effectiveness of the NSPMS. The experimental results show that combining a vibration isolator with the NSPMS in parallel can lower the natural frequency and improve the isolation performance of the isolator.


2021 ◽  
Author(s):  
Xinghua Zhou ◽  
Dingxuan Zhao ◽  
Xiao Sun ◽  
Xiao Yang ◽  
Jianhai Zhang ◽  
...  

Abstract A novel passive asymmetric quasi-zero stiffness vibration isolator (AQZS-VI) comprising two linear springs acting in parallel with one negative stiffness element (NSE) is proposed, of which the NSE is mainly constructed by the combination of cantilever plate spring and L-shaped lever (CPS-LSL). The static model of the isolator is deduced considering the geometrical nonlinearity of the NSE and the bending deformation of plate spring. The nonlinear stiffness properties of the CPS-LSL and the AQZS-VI, as well as the nonlinear damping properties of the AQZS-VI are discussed. The absolute displacement transmissibility of the AQZS-VI under base displacement excitation is obtained using Harmonic Balance Method, and the effects of different excitation amplitudes and damping factors on the vibration isolation performance are analyzed. Better than other quasi-zero stiffness vibration isolators (QZS-VI) whose NSEs do not provide supporting force at zero stiffness point, the NSE of the AQZS-VI provides more supporting force than the parallel connected linear springs, which is very beneficial for improving the bearing capacity of the isolator. Compared with a typical symmetric QZS-VI with same damping property, the AQZS-VI has longer stroke with low stiffness and lower peak value of displacement transmissibility. The prototype experiments indicate that the AQZS-VI outperforms the linear counterpart with much smaller starting frequency of vibration isolation and lower displacement transmissibility. The proposed AQZS-VI has great potential for applying in various engineering practices with superior vibration isolation performance.


2016 ◽  
Vol 86 (20) ◽  
pp. 2225-2235 ◽  
Author(s):  
Fuxing Chen ◽  
Yanping Liu ◽  
Hong Hu

This paper presents an experimental study on the vibration isolation performance of weft-knitted spacer fabrics under forced harmonic excitation. The weft-knitted spacer fabrics with two different thicknesses were first designed by varying the linking distance of the spacer monofilament and fabricated using an electronic flat knitting machine. Then, their vibration isolation performance was tested under forced vibration condition via sinusoidal sweeps from low to high frequencies. The typical acceleration transmissibility curve and effects of fabric thickness, load mass and excitation level were discussed in detail. The results obtained show that the thicker spacer fabric has a lower resonance frequency than the thinner fabric due to lower stiffness, and thus can isolate the vibration at a lower frequency level. The results also show that changing the load mass and excitation level changes the loading conditions of the fabric structure, and thus also changes fabric stiffness and vibration isolation performance due to nonlinear behavior of spacer fabrics. It is expected that this study could provide some useful information to promote the application of weft-knitted spacer fabrics for vibration isolation.


Author(s):  
J P Talbot ◽  
H E M Hunt

Base-isolation of buildings is a common solution to the problem of ground-borne vibration from urban road and rail networks. Conventional designs incorporate vibration isolation bearings between a building and its foundation, aligned in the vertical direction so as to isolate the building from vertical motion of its foundation. In some cases, in order to accommodate horizontal loads, additional side-restraint bearings aligned in the horizontal direction are required. This paper describes a theoretical investigation into the effect of side-restraint bearings on the performance of base-isolated buildings. Three generic models, based on a modern concrete-framed building, are used to demonstrate that a building's flexibility, the nature of the vibration input and the presence of a flexible foundation are all important in determining isolation performance. It is also illustrated how the concept of isolation frequency, commonly used to indirectly specify the stiffness of base bearings, may not be generally extended to side-restraint bearings. The models indicate that, for maximum performance, the stiffness of any side-restraint bearings should be minimized.


Sign in / Sign up

Export Citation Format

Share Document