The effect of side-restraint bearings on the performance of base-isolated buildings

Author(s):  
J P Talbot ◽  
H E M Hunt

Base-isolation of buildings is a common solution to the problem of ground-borne vibration from urban road and rail networks. Conventional designs incorporate vibration isolation bearings between a building and its foundation, aligned in the vertical direction so as to isolate the building from vertical motion of its foundation. In some cases, in order to accommodate horizontal loads, additional side-restraint bearings aligned in the horizontal direction are required. This paper describes a theoretical investigation into the effect of side-restraint bearings on the performance of base-isolated buildings. Three generic models, based on a modern concrete-framed building, are used to demonstrate that a building's flexibility, the nature of the vibration input and the presence of a flexible foundation are all important in determining isolation performance. It is also illustrated how the concept of isolation frequency, commonly used to indirectly specify the stiffness of base bearings, may not be generally extended to side-restraint bearings. The models indicate that, for maximum performance, the stiffness of any side-restraint bearings should be minimized.

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110704
Author(s):  
Zhuang Dong ◽  
Jian Yang ◽  
Chendi Zhu ◽  
Dimitrios Chronopoulos ◽  
Tianyun Li

This study investigates the vibration power flow behavior and performance of inerter-based vibration isolators mounted on finite and infinite flexible beam structures. Two configurations of vibration isolators with spring, damper, and inerter as well as different rigidities of finite and infinite foundation structures are considered. Both the time-averaged power flow transmission and the force transmissibility are studied and used as indices to evaluate the isolation performance. Comparisons are made between the two proposed configurations of inerter-based isolators and the conventional spring-damper isolators to show potential performance benefits of including inerter for effective vibration isolation. It is shown that by configuring the inerter, spring, and damper in parallel in the isolator, anti-peaks are introduced in the time-averaged transmitted power and force transmissibility at specific frequencies such that the vibration transmission to the foundation can be greatly suppressed. When the inerter is connected in series with a spring-damper unit and then in-parallel with a spring, considerable improvement in vibration isolation can be achieved near the original peak frequency while maintaining good high-frequency isolation performance. The study provides better understanding of the effects of adding inerters to vibration isolators mounted on a flexible foundation, and benefits enhanced designs of inerter-based vibration suppression systems.


2020 ◽  
Vol 10 (10) ◽  
pp. 3597
Author(s):  
Leilei Han ◽  
Haibin Wei ◽  
Fuyu Wang

Silty clay modified by fly ash and crumb rubber is a kind of sustainable subgrade filler that has good freeze–thaw resistance stability, but weak vibration isolation performance. The objective of this study was to improve the vibration isolation of the modified soil and investigate the vibration isolation effect of the composite subgrade structure of extruded polystyrene (XPS) plates and the modified soil by the indoor impact test. First, the vibration isolation performance of silty clay, modified soil, and composite subgrade structure was respectively evaluated. Second, the effect of the XPS plate’s thickness and vibration intensity on the vibration performance of the composite subgrade structure were evaluated. Third, the vibration isolation performance of the test groups under the condition of freeze–thaw cycles was assessed. The results show that the vibration isolation performance of the subgrade can be effectively improved by setting XPS plates. The composite subgrade structure has a certain vibration isolation effect, especially in the vertical direction. Considering the vibration isolation performance and costs, 5 cm was the optimum XPS plate thickness. The composite subgrade structure showed a great vibration isolation performance under the condition of freeze–thaw cycles, so it is suitable for application in road subgrade in seasonal frozen regions.


2019 ◽  
Vol 25 (16) ◽  
pp. 2282-2292 ◽  
Author(s):  
Niuniu Liu ◽  
Zeyu Jin ◽  
Hongxing Hua

Two models have previously been commonly used to predict the isolation performance of a hydraulic leveraged dynamic anti-resonance vibration isolator. The models have deficiencies, however, in considering the volumetric stiffness of the isolator. In this paper, a new model is proposed to improve the accuracy by reasonably taking the volumetric stiffness into consideration. The model is validated by a carefully designed experiment. The influence of the volumetric stiffness on the isolation performance of the isolator is investigated by the validated model. The results indicate that the volumetric stiffness of the isolator and its location in a mathematical model have a significant influence on the isolation frequency and the second natural frequency of the isolator. The dependence of the volumetric stiffness on the isolation frequency, the attenuation capacity at the isolation frequency, and the bandgap of the isolator is presented. The investigation will enhance the understanding of the hydraulic leveraged dynamic anti-resonance vibration isolator, and facilitate the design and exploitation of this type of isolator in the field of vibration isolation.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
G. T. Zheng ◽  
Y. Q. Tu

The problem of flexible structure vibration isolation on a flexible foundation is analytically investigated by simplifying the vibration isolation as single axis isolation, which can be realized by a proper design, and the problem of the whole spacecraft vibration is taken as an example for the application as both the spacecraft (isolated structure) and the launch vehicle (foundation) are flexible structures. A numerical example of the whole spacecraft vibration isolation is also provided for further explaining those conclusions derived from the analytical studies. It is found from the study that the isolator’s damping is important for attenuating the vibration and that weakening the isolator’s stiffness has the same effect as increasing its damping. However, a weaker stiffness means a weaker coupling among the structures and may magnify the vibration at some resonant frequencies, which are close to those of individual structures. The coupling effect of the structure’s flexibility on the isolation may be significant in some cases and a coupling analysis is essential for ensuring the isolation performance. Because of the importance of the isolator’s damping in reducing the vibration transmissibility and the vibration of the coupled structure, it is more appropriate to describe the vibration isolation of the flexible structure as vibration attenuation.


Author(s):  
Leilei Han ◽  
Haibin Wei ◽  
Fuyu Wang

Silty clay modified by fly ash and crumb rubber is a kind of sustainable subgrade filler which has good anti-freeze-thaw resistance stability but wake vibration isolation performance. The objective of this study was to improve the vibration isolation of the modified soil and investigate the vibration isolation effect of the composite subgrade structure of XPS plates and the modified soil by indoor impact test. First, the vibration isolation performance of silty clay, modified soil and composite subgrade structure was respectively evaluated. Second, the effect of XPS plate’s thickness and vibration intensity on the vibration performance of the composite subgrade structure were evaluated. Third, the vibration isolation performance of the test groups under the condition of freeze-thaw cycles was assessed. The results show that the vibration isolation performance of subgrade can be effectively improved by setting XPS plates. The composite subgrade structure has certain vibration isolation effect, especially in vertical direction. Considering vibration isolation performance and costs, 5cm is the optimum XPS plates thickness. The composite subgrade structure has great vibration isolation performance under the condition of freeze-thaw cycles, so it is suitable to be applied in road subgrade in seasonal frozen regions.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 549-556
Author(s):  
Yajun Luo ◽  
Linwei Ji ◽  
Yahong Zhang ◽  
Minglong Xu ◽  
Xinong Zhang

The present work proposed an hourglass-type electromagnetic isolator with negative resistance (NR) shunt circuit to achieve the effective suppression of the micro-amplitude vibration response in various advanced instruments and equipment. By innovatively design of combining the displacement amplifier and the NR electromagnetic shunt circuit, the current new type of vibration isolator not only can effectively solve the problem of micro-amplitude vibration control, but also has significant electromechanical coupling effect, to obtain excellent vibration isolation performance. The design of the isolator and motion relationship is presented firstly. The electromechanical coupling dynamic model of the isolator is also given. Moreover, the optimal design of the NR electromagnetic shunt circuit and the stability analysis of the vibration isolation system are carried out. Finally, the simulation results about the transfer function and vibration responses demonstrated that the isolator has a significant isolation performance.


Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


2001 ◽  
Author(s):  
Toshihiko Sugiura ◽  
Masayuki Kondo

Abstract This research deals with nonlinear dynamics of a permanent magnet freely levitated above a high-Tc superconductor (HTSC) excited in the vertical direction. Magnetic force and torque can be evaluated analytically by the advanced mirror image method as nonlinear functions of both displacement and roll angle of the magnet. Equations of 3 d.o.f. motion show that the magnet has two oscillation modes due to linear coupling of the horizontal and roll motions. The both modes can be excited by nonlinear coupling with vertical motion when the superconductor is exited vertically in the neighborhood of the sum of the natural frequency of each mode. Frequency response of this combination resonance was numerically simulated. This resonance was also observed in experiments.


2022 ◽  
pp. 107754632110514
Author(s):  
Sivakumar Solaiachari ◽  
Jayakumar Lakshmipathy

In this study, a new type of vibration isolator based on fluidic actuators and a composite slab was tested experimentally with an unbalanced disturbance. Quasi-zero stiffness vibration isolation techniques are advanced and provide effective isolation performance for non-nominal loads. The isolation performance of the proposed isolator was compared to that of a nonlinear vibration isolator equipped with fluidic actuators and a mechanical coil spring (NLVIFA). The NLVIFA system is better suited to non-nominal loads; however, the mechanical spring axial deflection leads to limited amplitude reduction in the system. To address this issue, a cross buckled slab was developed to replace a mechanical coil spring for absorbing vertical deflection by transverse bending, which is made of a specially developed composite material of Basalt fiber reinforced with epoxy resin and enhanced with graphene nano pellets. This current study was concerned with the theoretical analysis and experimental investigations of the proposed nonlinear vibration isolator with fluidic actuators and composite material (NLVIFA-CM), which performs under quasi-zero stiffness characteristics. Because of its reduced axial deflection, the theoretical and experimental results show that the NLVIFA-CM system outperforms the NLVIFA system and other linear type vibration isolators in terms of isolation performance. Furthermore, the proposed vibration isolator makes a significant contribution to low-frequency vibration.


2018 ◽  
Vol 37 (4) ◽  
pp. 682-699
Author(s):  
Xinfang Ge ◽  
Weirong Wang ◽  
Wei Yuan

Development of micro and ultra-precision machining, precision instruments and equipment, precision assembly and testing has put forward more and more high requirements to vibration isolation on environmental elements, especially the pedestrian excitation generated by workers' normal walking. Therefore, it is very important to study the pedestrian excitation's influence on vibration characteristics of precision instruments and equipment. In this study, dynamic model including mathematical model of pedestrian excitation, interaction model between pedestrian and rectangular plate structure, the human–plate coupled dynamic equation in vertical direction of pedestrian–plate structure was established. And then we use the Newmark-β method to solve the time-domain step-by-step integration of the first four order modes' dynamic equations and study the influence of the linear notion trajectory along the central axis direction on the dynamic characteristics of the rectangular plate. By simulation, we discussed plate structure response under different conditions, including plate structure displacement and acceleration response under the single person excitation with different velocities, under normal walking velocity with different number of pedestrians and under this case of different distance between two pedestrians. The results show that the structural vibration induced by pedestrian excitation has great influence on dynamic characteristics of plate.


Sign in / Sign up

Export Citation Format

Share Document