A spectral framework for the solution of fractional optimal control and variational problems involving Mittag–Leffler nonsingular kernel

2020 ◽  
pp. 107754632097481
Author(s):  
Haniye Dehestani ◽  
Yadollah Ordokhani

A new fractional-order Dickson functions are introduced for solving numerically fractional optimal control and variational problems involving Mittag–Leffler nonsingular kernel. The type of fractional derivative in the proposed problems is the Atangana–Baleanu–Caputo fractional derivative. In the process of the method, we use fractional-order Dickson functions and their properties to provide an accurate computational technique for calculating operational matrices, at first. Then, with the help of operational matrices and the Lagrange multiplier method, these problems are reduced to a system of algebraic equations. At last, to demonstrate the effectiveness of the new method, we enforce the proposed algorithm for several examples.

Author(s):  
Ali Ketabdari ◽  
Mohammad Hadi Farahi ◽  
Sohrab Effati

Abstract We define a new operational matrix of fractional derivative in the Caputo type and apply a spectral method to solve a two-dimensional fractional optimal control problem (2D-FOCP). To acquire this aim, first we expand the state and control variables based on the fractional order of Bernstein functions. Then we reduce the constraints of 2D-FOCP to a system of algebraic equations through the operational matrix. Now, one can solve straightforward the problem and drive the approximate solution of state and control variables. The convergence of the method in approximating the 2D-FOCP is proved. We demonstrate the efficiency and superiority of the method by comparing the results obtained by the presented method with the results of previous methods in some examples.


2021 ◽  
pp. 107754632110169
Author(s):  
Hossein Jafari ◽  
Roghayeh M Ganji ◽  
Khosro Sayevand ◽  
Dumitru Baleanu

In this work, we present a numerical approach based on the shifted Legendre polynomials for solving a class of fractional optimal control problems. The derivative is described in the Atangana–Baleanu derivative sense. To solve the problem, operational matrices of AB-fractional integration and multiplication, together with the Lagrange multiplier method for the constrained extremum, are considered. The method reduces the main problem to a system of nonlinear algebraic equations. In this framework by solving the obtained system, the approximate solution is calculated. An error estimate of the numerical solution is also proved for the approximate solution obtained by the proposed method. Finally, some illustrative examples are presented to demonstrate the accuracy and validity of the proposed scheme.


2020 ◽  
pp. 107754632093312
Author(s):  
Ayatollah Yari

In this study, a numerical method based on Hermite polynomial approximation for solving a class of fractional optimal control problems is presented. The order of the fractional derivative is taken as less than one and described in the Caputo sense. Operational matrices of integration by using such known formulas as Caputo and Riemann–Liouville operators for computing fractional derivatives and integration of polynomials is introduced and used to reduce the problem of a system of algebraic equations. The convergence of the proposed method is analyzed, and the error upper bound for the operational matrix of the fractional integration is obtained. To confirm the validity and accuracy of the proposed numerical method, three numerical examples are presented along with a comparison between our numerical results and those obtained using Legendre polynomials. Illustrative examples are included to demonstrate the validity and applicability of the new technique.


Author(s):  
Forugh Valian ◽  
Yadollah Ordokhani ◽  
Mohammad Ali Vali

The main purpose of this paper is to provide an efficient method for solving some types of fractional optimal control problems governed by integro-differential and differential equations, and because finding the analytical solutions to these problems is usually difficult, a numerical method is proposed. In this study, the fractional-order Bernoulli functions (F-BFs) are applied as basis functions and a new operational matrix of fractional integration is constructed for these functions. In the first step, the problem is transformed into an equivalent variational problem. Then the F-BFs, the constructed operational matrix, the Gauss quadrature formula, and necessary conditions for optimization are used to convert the problem into a system of algebraic equations. Finally, with the aid of Newton’s iterative method, the system of algebraic equations is solved and the approximate solution of the problem is obtained. Several numerical examples have been analysed for illustrating the efficiency and accuracy of the proposed method, and the results have been compared with the exact solutions and the results of other methods. The results show that the method provides accurate solutions.


2020 ◽  
Vol 23 (6) ◽  
pp. 1783-1796
Author(s):  
Neelam Singha

Abstract In this article, we aim to analyze a mathematical model of tumor growth as a problem of fractional optimal control. The considered fractional-order model describes the interaction of effector-immune cells and tumor cells, including combined chemo-immunotherapy. We deduce the necessary optimality conditions together with implementing the Adomian decomposition method on the suggested fractional-order optimal control problem. The key motive is to perform numerical simulations that shall facilitate us in understanding the behavior of state and control variables. Further, the graphical interpretation of solutions effectively validates the applicability of the present analysis to investigate the growth of cancer cells in the presence of medical treatment.


2016 ◽  
Vol 5 (3) ◽  
pp. 152
Author(s):  
Sameer Hasan ◽  
Eman Namah

This work provided the evolution of the algorithm for analytic solution of system of fractional differential-algebraic equations (FDAEs).The algorithm referred to good effective method for combination the Laplace Iteration method with general Lagrange multiplier (LLIM). Through this method we have reached excellent results in comparison with exact solution as we illustrated in our examples.


2021 ◽  
Vol 5 (4) ◽  
pp. 212
Author(s):  
Monireh Nosrati Sahlan ◽  
Hojjat Afshari ◽  
Jehad Alzabut ◽  
Ghada Alobaidi

In this paper, fractional-order Bernoulli wavelets based on the Bernoulli polynomials are constructed and applied to evaluate the numerical solution of the general form of Caputo fractional order diffusion wave equations. The operational matrices of ordinary and fractional derivatives for Bernoulli wavelets are set via fractional Riemann–Liouville integral operator. Then, these wavelets and their operational matrices are utilized to reduce the nonlinear fractional problem to a set of algebraic equations. For solving the obtained system of equations, Galerkin and collocation spectral methods are employed. To demonstrate the validity and applicability of the presented method, we offer five significant examples, including generalized Cattaneo diffusion wave and Klein–Gordon equations. The implementation of algorithms exposes high accuracy of the presented numerical method. The advantage of having compact support and orthogonality of these family of wavelets trigger having sparse operational matrices, which reduces the computational time and CPU requirements.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


2019 ◽  
Vol 25 (15) ◽  
pp. 2143-2150 ◽  
Author(s):  
M Abdelhakem ◽  
H Moussa ◽  
D Baleanu ◽  
M El-Kady

Two schemes to find approximated solutions of optimal control problems of fractional order (FOCPs) are investigated. Integration and differentiation matrices were used in these schemes. These schemes used Chebyshev polynomials in the shifted case as a functional approximation. The target of the presented schemes is to convert such problems to optimization problems (OPs). Numerical examples are included, showing the strength of the schemes.


Sign in / Sign up

Export Citation Format

Share Document