scholarly journals Discrete singular convolution–polynomial chaos expansion method for free vibration analysis of non-uniform uncertain beams

2021 ◽  
pp. 107754632098819
Author(s):  
Abdullah Seçgin ◽  
Murat Kara ◽  
Neil Ferguson

This article enhances the discrete singular convolution method for free vibration analysis of non-uniform thin beams with variability in their geometrical and material properties such as thickness, specific volume (inverse of density) and Young’s modulus. The discrete singular convolution method solves the differential equation of motion of a structure with a high accuracy using a small number of discretisation points. The method uses polynomial chaos expansion to express these variabilities simulating uncertainty in a closed form. Non-uniformity is locally provided by changing the cross section and Young’s modulus of the beam along its length. In this context, firstly natural frequencies of deterministic uniform and non-uniform beams are predicted via the discrete singular convolution. These results are compared with finite element calculations and analytical solutions (if available) for the purpose of verification. Next, the uncertainty of the beam because of geometrical and material variabilities is modelled in a global manner by polynomial chaos expansion to predict probability distribution functions of the natural frequencies. Monte Carlo simulations are then performed for validation purpose. Results show that the proposed algorithm of the discrete singular convolution with polynomial chaos expansion is very accurate and also efficient, regarding computation cost, in handling non-uniform beams having material and geometrical variabilities. Therefore, it promises that it can be reliably applied to more complex structures having uncertain parameters.

Author(s):  
Jinwen Feng ◽  
Qingya Li ◽  
Alba Sofi ◽  
Guoyin Li ◽  
Di Wu ◽  
...  

The uncertain free vibration analysis of engineering structures with the consideration of nonstochastic spatially dependent uncertain parameters is investigated. A recently proposed concept of interval field is implemented to model the intrinsic spatial dependency of the uncertain-but-bounded system parameters. By employing the appropriate discretization scheme, evaluations of natural frequencies for engineering structures involving interval fields can be executed within the framework of the finite element method. Furthermore, a robust, yet efficient, computational strategy is proposed such that the extreme bounds of natural frequencies of the structure involving interval fields can be rigorously captured by performing two independent eigen-analyses. Within the proposed computational analysis framework, the traditional interval arithmetic is not employed so that the undesirable effect of the interval overestimation can be completely eliminated. Consequently, both sharpness and physical feasibility of the results can be guaranteed to a certain extent for any discretized interval field. The plausibility of the adopted interval field model, as well as the feasibility of the proposed computational scheme, is clearly demonstrated by investigating both academic-sized and practically motivated engineering structures.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Wang Zhipeng ◽  
Liu Wei ◽  
Yuan Yunbo ◽  
Shuai Zhijun ◽  
Guo Yibin ◽  
...  

Free vibration of rings is presented via wave approach theoretically. Firstly, based on the solutions of out-of-plane vibration, propagation, reflection, and coordination matrices are derived for the case of a fixed boundary at inner surface and a free boundary at outer surface. Then, assembling these matrices, characteristic equation of natural frequency is obtained. Wave approach is employed to study the free vibration of these ring structures. Natural frequencies calculated by wave approach are compared with those obtained by classical method and Finite Element Method (FEM). Afterwards natural frequencies of four type boundaries are calculated. Transverse vibration transmissibility of rings propagating from outer to inner and from inner to outer is investigated. Finally, the effects of structural and material parameters on free vibration are discussed in detail.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750033 ◽  
Author(s):  
Son Thai ◽  
Nam-Il Kim ◽  
Jaehong Lee

This paper presents a free vibration analysis of cable structures based on the isogeometric approach. The nonuniform rational B-splines (NURBS) basis functions are employed to represent both the exact geometry of cable and displacement fields. In order to enrich the basis functions, the [Formula: see text]-, [Formula: see text]- and [Formula: see text]-refinement strategies are implemented. Therefore, these refinement schemes increase the accuracy of solution fields. For determining the static configuration of slack cables as a reference configuration, the well-known penalty method is used. Three numerical examples for slack and taut cable structures are presented in which different refinement schemes are utilized to obtain the converged results. The accuracy and reliability of the present numerical method are verified by comparing the natural frequencies with the results given by other researchers.


2002 ◽  
Vol 124 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Akhilesh K. Jha ◽  
Daniel J. Inman ◽  
Raymond H. Plaut

Free vibration analysis of a free inflated torus of circular cross-section is presented. The shell theory of Sanders, including the effect of pressure, is used in formulating the governing equations. These partial differential equations are reduced to ordinary differential equations with variable coefficients using complete waves in the form of trigonometric functions in the longitudinal direction. The assumed mode shapes are divided into symmetric and antisymmetric groups, each given by a Fourier series in the meridional coordinate. The solutions (natural frequencies and mode shapes) are obtained using Galerkin’s method and verified with published results. The natural frequencies are also obtained for a circular cylinder with shear diaphragm boundary condition as a special case of the toroidal shell. Finally, the effects of aspect ratio, pressure, and thickness on the natural frequencies of the inflated torus are studied.


Sign in / Sign up

Export Citation Format

Share Document