Structural similitudes of stiffened cylinders

2017 ◽  
Vol 24 (3) ◽  
pp. 527-541 ◽  
Author(s):  
G Petrone ◽  
M Manfredonia ◽  
S De Rosa ◽  
F Franco

Similarity theory is a branch of engineering science that deals with establishing conditions of similarity among phenomena and is applied to various fields, such as structural engineering problems, vibration and impact. Tests and numerical simulation of scaled models are still a valuable design tool, whose purpose is to accurately predict the behaviour of large or small prototypes through scaling laws applied to the experimental and numerical results. The aim of this paper is to predict the behaviour of the complete and incomplete similarity of stiffened cylinders by applying distorted scaling laws of the models in similitude. The investigation is performed using models based on the finite element method within commercial software. Two classes of cylinders scaled, with different laws, and, hence, reproducing replicas (exact similitude) and avatars (distorted similitude) are investigated.

2011 ◽  
Vol 473 ◽  
pp. 159-167
Author(s):  
João F.M. Caseiro ◽  
Robertt Angelo Fontes Valente ◽  
António Andrade-Campos ◽  
Renato Natal Jorge

This paper is focused on the development and implementation of an innovative optimisation algorithm for the wrinkling and thinning control during the hydroforming of complex metallic parts. A straightforward numerical algorithm for simultaneous tracking and evaluation of the initiation of wrinkling/thinning defects was implemented, together with a numerical simulation program based on the Finite Element Method (FEM). After undesirable wrinkling/thinning patterns are identified during FEM simulation, the developed optimisation procedure (called Hybrid Differential Evolution Particle Swarm Optimisation - HDEPSO) is responsible to automatically correct the process input parameters, in order to achieve the successful forming of the desired part. In the end, the combined procedure (optimisation methodology + FEM) proved to be able to lead to a suitable numerical simulation and design tool for industrial hydroformed metallic tubular parts.


2013 ◽  
Vol 300-301 ◽  
pp. 1148-1151 ◽  
Author(s):  
Zhong Luo ◽  
Jian Zhang Li ◽  
Yu Long Yan ◽  
Qing Kai Han

To predict the vibration characteristics of the rotor-bearing system by using the scale model and the associated scaling laws may significantly reduce the time and money required by the experiments. To this end, the dynamic similarity criteria are investigated inferring from the model behavior of rotor-bearing system to the vibration response of the prototype. The similar relationship was established by combining method of dimensional analysis and equation analysis based on similarity theory, and the effectiveness was verified through the finite element method. The result provide the theoretical rational for further study of the similarity design of the rotor-bearing system.


2016 ◽  
Vol 30 (23) ◽  
pp. 1650297 ◽  
Author(s):  
Bohua Sun

This paper proposes temporal scaling laws of the density-weighted energy spectrum for compressible turbulence in terms of dissipation rate, frequency and the Mach number. The study adopts the incomplete similarity theory in the scaling analysis of compressible turbulence motion. The investigation shows that the temporal Eulerian and Lagrangian energy spectra approach the [Formula: see text] and [Formula: see text] power laws when the Mach number M tends to reach unity and infinity, respectively.


2020 ◽  
Vol 65 (1) ◽  
pp. 51-58
Author(s):  
Sava Ianici

The paper presents the results of research on the study of the elastic deformation of a flexible wheel from a double harmonic transmission, under the action of a cam wave generator. Knowing exactly how the flexible wheel is deformed is important in correctly establishing the geometric parameters of the wheels teeth, allowing a better understanding and appreciation of the specific conditions of harmonic gearings in the two stages of the transmission. The veracity of the results of this theoretical study on the calculation of elastic deformations and displacements of points located on the average fiber of the flexible wheel was subsequently verified and confirmed by numerical simulation of the flexible wheel, in the elastic field, using the finite element method from SolidWorks Simulation.


Author(s):  
Er. Hardik Dhull

The finite element method is a numerical method that is used to find solution of mathematical and engineering problems. It basically deals with partial differential equations. It is very complex for civil engineers to study various structures by using analytical method,so they prefer finite element methods over the analytical methods. As it is an approximate solution, therefore several limitationsare associated in the applicationsin civil engineering due to misinterpretationof analyst. Hence, the main aim of the paper is to study the finite element method in details along with the benefits and limitations of using this method in analysis of building components like beams, frames, trusses, slabs etc.


2011 ◽  
Vol 473 ◽  
pp. 564-571 ◽  
Author(s):  
Romain Boman ◽  
Jean Philippe Ponthot

Due to the length of the mill, accurate modelling of stationary solution of continuous cold roll forming by the finite element method using the classical Lagrangian formulation usually requires a very large mesh leading to huge CPU times. In order to model industrial forming lines including many tools in a reasonable time, the sheet has to be shortened or the element size has to be increased leading to inaccurate results. On top of this, applying loads and boundary conditions on this smaller sheet is usually more difficult than in the continuous case. Moreover, transient dynamic vibrations, which are unnecessarily computed, may appear when the sheet hits each tool, decreasing the convergence rate of the numerical simulation. Beside this classical Lagrangian approach, an alternative method is given by the Arbitrary Lagrangian Eulerian (ALE) formalism which consists in decoupling the motion of the material and the mesh. Starting from an initial guess of the sheet geometry between the rolls, the numerical simulation is performed until the stationary state is reached with a mesh, the nodes of which are fixed in the rolling direction but are free to move on perpendicular plane, following the geometrical boundary of the sheet. The whole forming line can then be modelled using a limited number of brick and contact elements because the mesh is only refined near the tools where bending and contact occur. In this paper, ALE results are compared to previous Lagrangian simulations and experimental measurement on a U-channel, including springback. Advantages of the ALE method are finally demonstrated by the simulation of a tubular rocker panel on a 16-stands forming mill.


Author(s):  
T. R. Grimm

Abstract The importance of the finite element method as an engineering tool for design and analysis is emphasized in a senior level elective course taught at Michigan Technological University. The course emphasizes hands-on experience with computers and the pre- and post-analysis of results to establish confidence in solutions obtained. The students learn by using the finite element method to “solve” several design projects, rather than by being told about the method without significant actual experience. They also learn about the basis of the method, including formation of the matrix equations required and the numerical methods used in their solution. Intelligent use of the method requires that engineers understand both the mechanics of how to apply the method, i.e modeling requirements, and the limitations imposed by the basic solution process. The course provides the students with important experience in using the powerful finite element method as a design tool. It requires a strong background of fundamentals and stimulates the problem solving thinking skills so essential to industry.


Sign in / Sign up

Export Citation Format

Share Document