scholarly journals Review: Technology, Chemistry and Microbiology of Whey Cheeses

2001 ◽  
Vol 7 (2) ◽  
pp. 105-116 ◽  
Author(s):  
M. E. Pintado ◽  
A. C. Macedo ◽  
F. X. Malcata

In whey cheese manufacture, whey, plain or added with milk, is heated by direct fire, bubbling steam or alternatively in jacketed vats. In some cases, salt s or organic acids are previously added. At 80-85 OC, the first particles of curd form; at 85-95 'C, the curd may be cooked for a few minutes to reduce moisture content and/or to obtain the desirable level of browning. After drainage at room temperature during molding for ca. 4 h, whey cheese is stored at ca. 4 'C. The typical mass yield is 6%, but addition of milk, calcium salts and preliminary concentration of protein (by condensation or ultrafiltration techniques) may increase yield considerably. Some types of whey cheeses are supposed to be consumed within a short time upon manufacture (e.g., Ricotta, Requeijdo and Manouri), whereas others bear a longer shelf life (e.g., Gjetost, Mysost and Myzithra). Whey cheeses are significantly different from one another in terms of chemical composition, which is mainly due to variations in the source and type of whey, as well as to the processing practices followed. Moisture content and pH of whey cheeses are usually high and favor microorganism growth (molds, yeasts, lactic acid bacteria and Enterobacteriaceae account for the dominant microflora in these cheeses). Adequate packaging of whey cheeses should be provided, and legislation should be prepared to fix standard characteristics of each type of whey cheese, and hence protect typical products from adulteration and fakes. Marketing efforts should also be aimed at increasing whey cheese consumption, either directly or incorporated in desserts, snack dips and pasta-type dishes.

EDUFORTECH ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Rizqy Zainul Ihsan ◽  
Dewi Cakrawati ◽  
Mustika Nuramalia Handayani ◽  
Sri Handayani

The study aim was to determine the shelf life of yogurt sinbiotik at several temperatures with the addition of Dioscorea esculenta modified flour. Lactic Acid Bacteria used for yoghurt making consist of Lactobacillus acidophilus, Bifidobacterium longun, Streptococcus themophillus. The method used Accelerated shelf life test (ASLT) with the characteristics observed namely pH, total acid value using titration method, and total lactic acid bacteria with TPC method. The concentration level of modified flour of Dioscorea esculenta was 2%. The shelf life of yogurt can be determined from the critical factor based on most rapid damage to the Arrhenius equation y = -3504,1x + 9.1043 and R2 = 0.5125. Yogurt sinbiotik stored at room temperature shelf life is 9.5 days. At 4 ° C storage temperature, shelf life is 23.2 days. At 40 ° C storage temperature, shelf life is 5.4 days. The addition of Dioscorea esculenta tuber starch in yogurt sinbiotik affect viability of LAB in the yogurt, since viability of lactic acid bacteria during storage has decreased, but the numbers are still within the range of CFU / ml on the final day of storage 


2011 ◽  
Vol 74 (5) ◽  
pp. 820-825 ◽  
Author(s):  
YOEN JU PARK ◽  
JINRU CHEN

This study was conducted to evaluate the abilities of five neutralizing agents, Dey-Engley (DE) neutralizing broth (single or double strength), morpholinepropanesulfonic acid (MOPS) buffer, phosphate-buffered saline (PBS), and sodium thiosulfate buffer, in mitigating the activities of acetic or lactic acid (2%) and an alkaline or acidic sanitizer (a manufacturer-recommended concentration) againt the cells of Shiga toxin–producing Escherichia coli (STEC; n = 9). To evaluate the possible toxicity of the neutralizing agents to the STEC cells, each STEC strain was exposed to each of the neutralizing agents at room temperature for 10 min. Neutralizing efficacy was evaluated by placing each STEC strain in a mixture of sanitizer and neutralizer under the same conditions. The neutralizing agents had no detectable toxic effect on the STEC strains. PBS was least effective for neutralizing the activity of selected organic acids and sanitizers. Single-strength DE and sodium thiosulfate neutralized the activity of both acetic and lactic acids. MOPS buffer neutralized the activity of acetic acid and lactic acid against six and five STEC strains, respectively. All neutralizing agents, except double-strength DE broth, had a limited neutralizing effect on the activity of the commercial sanitizers used in the study. The double-strength DE broth effectively neutralized the activity of the two commercial sanitizers with no detectable toxic effects on STEC cells.


2017 ◽  
Vol 17 (1) ◽  
pp. 5
Author(s):  
Agus Safari ◽  
Sarah Fahma Ghina ◽  
Sadiah Djajasoepena ◽  
O. Suprijana ' ◽  
Ida Indrawati ◽  
...  

Mixed lactic acid bacteria culture is commonly used in yogurt production. In the present study, two lactic acid bacteria (Lactobacillus bulgaricus and Streptococcus thermophillus) was used as starter culture. Calcium carbonate was added to the starter culture to increase the quality of mixed starter culture of L. bulgaricus and S. thermophillus with ratio of 4:1. The present study was directed to investigate the chemical composition of mixed starter culture with and without calcium carbonat addition. Furthermore, the effect of each starter culture on yogurt product chemical composition was also examined. The pH, lactose, soluble protein and acid content was determined as chemical composition parameters. For starter culture without calcium carbonate addition, the yogurt has pH, lactose, soluble protein and acid content of 4.18–4.39, 4.18–4.39% w/v, 2.88–4.36% w/v and 0.82–0.99% w/v, respectively. While for starter culture with calcium carbonate addition, the yogurt product has pH, lactose, soluble protein and acid content of 4.26–4.37, 1.47–1.75% b/v, 3.42–4.95% w/v and 0.86–1.11% w/v, respectively. Addition of 0.05% w/v calcium carbonate to mixed starter culture gave effect on lactose consumption, where it still can convert lactose to lactic acid up to 45 days of storage. Furthermore, the yogurt product made with starter culture with calcium carbonate addition has higher soluble protein content compared to yogurt made with starter culture without calcium carbonate addition


2020 ◽  
pp. 32-42
Author(s):  
S. Aforijiku ◽  
S. M. Wakil ◽  
A. A. Onilude

Aim: This work was carried out to investigate the influence of Lactic Acid Bacteria (LAB) on organoleptic quality and proximate composition of yoghurt, and viability of starter cultures in yoghurt. Methods: The LAB starter cultures were selected based on their ability to produce diacetyl and lactic acid. Results: Lactobacillus caseiN1 produced the highest quantity (2.72 g/L) of diacetyl at 48 hrs of incubation while Pediococcus acidilacticiG1 had the lowest amount (0.50 g/L). The pH of produced yoghurt ranged between 4.40 and 5.58 while the corresponding lactic acid contents ranged between 0.70 and 0.96 g/L. Yoghurt produced with cow milk inoculated with L. PlantarumN24 and L. BrevisN10 had the lowest pH (4.40) at significant level of P≤0.05. Yoghurt with mixed culture of L. PlantarumN24 and L. PlantarumN17 had the highest protein content (5.13%) while spontaneous fermentation (control) produced the least (0.48%). Yoghurt produced from cow milk inoculated with L. PlantarumN24 and L. PlantarumN17 was rated best with overall acceptability (9.0) during first day of storage while the commercial yoghurt (5.8) and spontaneous fermentation (6.8) had least overall acceptability at P≤0.05. Conclusion: Yoghurt samples stored in refrigerator had more viable LAB counts for a period of 21 days while the samples stored at room temperature had a day count except for yoghurt produced with cow milk inoculated with L. plantarumN24 which retained its viability at the second day. The yoghurt produced with selected LAB starters are better than commercial yoghurt in terms of sensory properties, proximate composition, pH and viability.


2020 ◽  
Vol 248 ◽  
pp. 116805 ◽  
Author(s):  
Siying Li ◽  
Yanlan Ma ◽  
Tengteng Ji ◽  
Dur E. Sameen ◽  
Saeed Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document