Effect of protein and glycerol concentration on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films

2013 ◽  
Vol 21 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Chang Chang ◽  
Michael T Nickerson
2011 ◽  
Vol 87 ◽  
pp. 213-222 ◽  
Author(s):  
Gui Yun Chen ◽  
Qiao Lei

Edible films based on whey protein isolate and sodium caseinate were prepared by uniform design method. Glycerol has been incorporated into the edible films as a plasticizer. For all types of films, the influences of components and forming temperature on film properties, such as mechanical properties, water solubility, optical properties, gas and water vapor permeability were investigated. The results suggested that glycerol was the most important factor influencing all the properties of edible composite protein films. However, both increases of sodium caseinate concentration and glycerol content contributed to decrease the barrier properties of gas and water vapor. Among the films studied, group D (prepared with 5% whey protein isolate, 2% sodium caseinate, 50% glycerol at the temperature of 50 °C) showed moderate mechanical properties, optical properties, water solubility and maximum barrier properties of gas and water vapor, with tensile strength=5.85MPa, elongation=101.20%, transparency=91.4%, gas permeability rate=49.92cm3m-2d-10.1MPa-1and water vapor permeability of 0.128×10-11g m-1s-1Pa-1, 0.260×10-11g m-1s-1Pa-1, 0.513×10-11g m-1s-1Pa-1, 1.252×10-11g m-1s-1Pa-1at the RH gradient of 10-40%, 10-50%, 10-60%, 10-70%, respectively.


DYNA ◽  
2015 ◽  
Vol 82 (191) ◽  
pp. 219-226 ◽  
Author(s):  
Ricardo David Andrade Pizarro ◽  
Olivier Skurtys ◽  
Fernando Osorio-Lira

The effect of gelatin, glycerol, and cellulose nanofiber (CNFs) concentrations on the mechanical properties, water vapor permeability, and color parameters of films was evaluated. The results indicate that the color is only affected by the gelatin concentration. Mechanical tests indicated that with increasing concentration of gelatin and CNFs, there is an increase in tensile strength, whereas an increase in glycerol concentration causes an increase in elongation, making the films more flexible. An increased concentration of gelatin and glycerol makes the film more permeable to water vapor, while an increase in the concentration of CNFs reduces this property. Finally, the addition of CNFs to gelatin-based films improves their mechanical and barrier properties (water vapor) without affecting the appearance (color) of the films.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bedriye Ucpinar Durmaz ◽  
Ayse Aytac

Abstract Bio-based films containing poly (vinyl alcohol)/casein have poor mechanical and water vapor barrier properties that limit their use in packaging application. Some properties such as water resistance and tensile strength can be increased by the cross-linking process. For this reason, poly(vinyl alcohol)/sodium caseinate (PVA/SC) blends were crosslinked by adding glutaraldehyde (GLA) and glyoxal (GL) at different ratios in this work. The films were prepared by solution casting technique. Fourier transform infrared analysis (FTIR) confirmed the crosslinking reaction between the components. As a result of the crosslinking, the thicknesses, water vapor barrier properties and water contact angle values of the films have increased. The total soluble matters (TSM) of PVA/SC film decreased with increasing amounts of crosslinkers and GLA crosslinked films exhibited lower TSM. The addition of GLA and GL resulted in more strengthened films as verified by the tensile test. On the other hand, GLA crosslinked films were more flexible than un-crosslinked and GL crosslinked PVA/SC films. The hydrophilic PVA/SC film became more hydrophobic with the increasing amounts of crosslinkers. With the crosslinking, the PVA/SC film became more thermally stable. In conclusion, the crosslinked PVA/SC films were obtained with suitable properties for packaging applications.


RSC Advances ◽  
2018 ◽  
Vol 8 (38) ◽  
pp. 21651-21657 ◽  
Author(s):  
Jiajie Wang ◽  
Ting Pan ◽  
Jian Zhang ◽  
Xiaozhi Xu ◽  
Qing Yin ◽  
...  

A hydrophobic film is fabricated by spin-coating of Tween 80 modified layered double hydroxide and polydimethylsiloxane alternately, which displays enhanced oxygen/water vapor barrier properties and anti-corrosion behavior toward metal substrates.


Sign in / Sign up

Export Citation Format

Share Document