scholarly journals Cell-Permeable, Small-Molecule Activators of the Insulin-Degrading Enzyme

2012 ◽  
Vol 17 (10) ◽  
pp. 1348-1361 ◽  
Author(s):  
Sayali S. Kukday ◽  
Surya P. Manandhar ◽  
Marissa C. Ludley ◽  
Mary E. Burriss ◽  
Benjamin J. Alper ◽  
...  

The insulin-degrading enzyme (IDE) cleaves numerous small peptides, including biologically active hormones and disease-related peptides. The propensity of IDE to degrade neurotoxic Aβ peptides marks IDE as a potential therapeutic target for Alzheimer disease. Using a synthetic reporter based on the yeast a-factor mating pheromone precursor, which is cleaved by multiple IDE orthologs, we identified seven small molecules that stimulate rat IDE activity in vitro. Half-maximal activation of IDE by the compounds is observed in vitro in the range of 43 to 198 µM. All compounds decrease the Km of IDE. Four compounds activate IDE in the presence of the competing substrate insulin, which disproportionately inhibits IDE activity. Two compounds stimulate rat IDE activity in a cell-based assay, indicating that they are cell permeable. The compounds demonstrate specificity for rat IDE since they do not enhance the activities of IDE orthologs, including human IDE, and they appear specific for a-factor–based reporters since they do not enhance rat IDE-mediated cleavage of Aβ-based reporters. Our results suggest that IDE activators function in the context of specific enzyme-substrate pairs, indicating that the choice of substrate must be considered in addition to target validation in IDE activator screens.

2011 ◽  
Vol 22 ◽  
pp. S41
Author(s):  
Metin Turkay ◽  
Bilal Cakir ◽  
Onur Dagliyan ◽  
I Halil Kavakli ◽  
Seda Kizilel

2018 ◽  
Vol 14 ◽  
pp. 2651-2664 ◽  
Author(s):  
Matthew J Styles ◽  
Helen E Blackwell

Quorum sensing (QS) allows many common bacterial pathogens to coordinate group behaviors such as virulence factor production, host colonization, and biofilm formation at high population densities. This cell–cell signaling process is regulated byN-acyl L-homoserine lactone (AHL) signals, or autoinducers, and LuxR-type receptors in Gram-negative bacteria. SdiA is an orphan LuxR-type receptor found inEscherichia, Salmonella, Klebsiella, and Enterobactergenera that responds to AHL signals produced by other species and regulates genes involved in several aspects of host colonization. The inhibition of QS using non-native small molecules that target LuxR-type receptors offers a non-biocidal approach for studying, and potentially controlling, virulence in these bacteria. To date, few studies have characterized the features of AHLs and other small molecules capable of SdiA agonism, and no SdiA antagonists have been reported. Herein, we report the screening of a set of AHL analogs to both uncover agonists and antagonists of SdiA and to start to delineate structure–activity relationships (SARs) for SdiA:AHL interactions. Using a cell-based reporter of SdiA inSalmonella entericaserovar Typhimurium, several non-natural SdiA agonists and the first set of SdiA antagonists were identified and characterized. These compounds represent new chemical probes for exploring the mechanisms by which SdiA functions during infection and its role in interspecies interactions. Moreover, as SdiA is highly stable when produced in vitro, these compounds could advance fundamental studies of LuxR-type receptor:ligand interactions that engender both agonism and antagonism.


PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e31787 ◽  
Author(s):  
Bilal Çakir ◽  
Onur Dağliyan ◽  
Ezgi Dağyildiz ◽  
İbrahim Bariş ◽  
Ibrahim Halil Kavakli ◽  
...  

2001 ◽  
Vol 226 (4) ◽  
pp. 334-341 ◽  
Author(s):  
M.C. Camberos ◽  
A.A. Pérez ◽  
D.P. Udrisar ◽  
M.I. Wanderley ◽  
J.C. Cresto

We studied the ability of ATP to inhibit in vitro the degrading activity of insulin-degrading enzyme. The enzyme was purified from rat skeletal muscle by successive chromatographic steps. The last purification step showed two bands at 110 and 60 kDa in polyacrylamide gel. The enzyme was characterized by its insulin degradation activity, the substrate competition of unlabeled to labeled insulin, the profile of enzyme inhibitors, and the recognition by a specific antibody. One to 5 mM ATP induced a dose-dependent inhibition of insulin degradation (determined by trichloroacetic acid precipitation and insulin antibody binding). Inhibition by 3 mM adenosine 5′-diphosphate, adenosine 5′-monophosphate, guanosine 5′-triphosphate, pyrophosphate, β-γ-methyleneadenosine 5′-triphosphate, adenosine 5′-O-(3 thiotriphosphate), and dibutiryl cyclic adenosine 5′-monophosphate was 74%, 4%, 38%, 46%, 65%, 36%, and 0%, respectively, of that produced by 3 mM ATP. Kinetic analysis of ATP inhibition suggested an allosteric effect as the plot of 1/v (insulin degradation) versus ATP concentration was not linear and the Hill coefficient was more than 1 (1.51 and 2.44). The binding constant for allosteric inhibition was K1T = 1.5 × 10–7 M showing a decrease of enzyme affinity induced by ATP. We conclude that ATP has an inhibitory effect on the insulin degradation activity of the enzyme.


2010 ◽  
Vol 29 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Wei-Jie Zhang ◽  
Xiao Luo ◽  
Zhan-Yun Guo

2014 ◽  
Vol 25 (6) ◽  
pp. 916-924 ◽  
Author(s):  
Diego Galagovsky ◽  
Maximiliano J. Katz ◽  
Julieta M. Acevedo ◽  
Eleonora Sorianello ◽  
Alvaro Glavic ◽  
...  

Mammalian insulin-degrading enzyme (IDE) cleaves insulin, among other peptidic substrates, but its function in insulin signaling is elusive. We use the Drosophila system to define the function of IDE in the regulation of growth and metabolism. We find that either loss or gain of function of Drosophila IDE (dIDE) can restrict growth in a cell-autonomous manner by affecting both cell size and cell number. dIDE can modulate Drosophila insulin-like peptide 2 levels, thereby restricting activation of the phosphatidylinositol-3-phosphate kinase pathway and promoting activation of Drosophila forkhead box, subgroup O transcription factor. Larvae reared in high sucrose exhibit delayed developmental timing due to insulin resistance. We find that dIDE loss of function exacerbates this phenotype and that mutants display increased levels of circulating sugar, along with augmented expression of a lipid biosynthesis marker. We propose that dIDE is a modulator of insulin signaling and that its loss of function favors insulin resistance, a hallmark of diabetes mellitus type II.


PLoS ONE ◽  
2011 ◽  
Vol 6 (6) ◽  
pp. e21429 ◽  
Author(s):  
Olivia Belbin ◽  
Michael Crump ◽  
Gina D. Bisceglio ◽  
Minerva M. Carrasquillo ◽  
Kevin Morgan ◽  
...  

2021 ◽  
Vol 7 (15) ◽  
pp. eabg1950
Author(s):  
Nicolas Bery ◽  
Carole J.R. Bataille ◽  
Angela Russell ◽  
Angela Hayes ◽  
Florence Raynaud ◽  
...  

Intracellular antibodies are tools that can be used directly for target validation by interfering with properties like protein-protein interactions. An alternative use of intracellular antibodies in drug discovery is developing small-molecule surrogates using antibody-derived (Abd) technology. We previously used this strategy with an in vitro competitive surface plasmon resonance method that relied on high-affinity antibody fragments to obtain RAS-binding compounds. We now describe a novel implementation of the Abd method with a cell-based intracellular antibody–guided screening method that we have applied to the chromosomal translocation protein LMO2. We have identified a chemical series of anti-LMO2 Abd compounds that bind at the same LMO2 location as the inhibitory anti-LMO2 intracellular antibody combining site. Intracellular antibodies could therefore be used in cell-based screens to identify chemical surrogates of their binding sites and potentially be applied to any challenging proteins, such as transcription factors that have been considered undruggable.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 227
Author(s):  
Miriam Corraliza-Gómez ◽  
Concepción Lillo ◽  
Irene Cózar-Castellano ◽  
Eduardo Arranz ◽  
Diego Sanchez ◽  
...  

The insulin-degrading enzyme (IDE) is a zinc-dependent metalloendopeptidase that belongs to the M16A metalloprotease family. IDE is markedly expressed in the brain, where it is particularly relevant due to its in vitro amyloid beta (Aβ)-degrading activity. The subcellular localization of IDE, a paramount aspect to understand how this enzyme can perform its proteolytic functions in vivo, remains highly controversial. In this work, we addressed IDE subcellular localization from an evolutionary perspective. Phylogenetic analyses based on protein sequence and gene and protein structure were performed. An in silico analysis of IDE signal peptide suggests an evolutionary shift in IDE exportation at the prokaryote/eukaryote divide. Subcellular localization experiments in microglia revealed that IDE is mostly cytosolic. Furthermore, IDE associates to membranes by their cytoplasmatic side and further partitions between raft and non-raft domains. When stimulated, microglia change into a secretory active state, produces numerous multivesicular bodies and IDE associates with their membranes. The subsequent inward budding of such membranes internalizes IDE in intraluminal vesicles, which later allows IDE to be exported outside the cells in small extracellular vesicles. We further demonstrate that such an IDE exportation mechanism is regulated by stimuli relevant for microglia in physiological conditions and upon aging and neurodegeneration.


2007 ◽  
Vol 51 (7) ◽  
pp. 2403-2411 ◽  
Author(s):  
Ana M. Sanchez ◽  
Diane Thomas ◽  
Eugene J. Gillespie ◽  
Robert Damoiseaux ◽  
Joseph Rogers ◽  
...  

ABSTRACT Anthrax lethal toxin is one of the fundamental components believed to be responsible for the virulence of Bacillus anthracis. In order to find novel compounds with anti-lethal toxin properties, we used a cell-based assay to screen a collection of approximately 500 small molecules. Nineteen compounds that blocked lethal toxin-mediated killing of RAW 264.7 macrophages were identified, and we report here on the characterization of the two most potent antitoxic compounds, amiodarone and bepridil. These drugs are used to treat cardiac arrhythmia or angina in humans at doses similar to those that provide protection against lethal toxin in vitro. Our results support a model whereby the antitoxic properties of both drugs result from their ability to block endosomal acidification, thereby blocking toxin entry. Amiodarone was tested in vivo and found to significantly increase survival of lethal toxin-challenged Fischer rats.


Sign in / Sign up

Export Citation Format

Share Document