Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum Silicate, Magnesium Silicate, Magnesium Trisilicate, Sodium Magnesium Silicate, Zirconium Silicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Lithium Magnesium Silicate, Lithium Magnesium Sodium Silicate, Montmorillonite, Pyrophyllite, and Zeolite

2003 ◽  
Vol 22 (1_suppl) ◽  
pp. 37-102 ◽  

This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 μm as possibly carcinogenic to humans, but fibers <5 μm were not classified as to their carcino-genicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin irritation study. Magnesium Aluminum Silicate and Sodium Magnesium Silicate caused minimal eye irritation in a Draize eye irritation test. Bentonite caused severe iritis after injection into the anterior chamber of the eyes of rabbits and when injected intralamellarly, widespread corneal infiltrates and retrocorneal membranes were recorded. In a primary eye irritation study in rabbits, Hectorite was moderately irritating without washing and practically nonirritating to the eye with a washout. Rats tolerated a single dose of Zeolite A without any adverse reaction in the eye. Calcium Silicate had no discernible effect on nidation or on maternal or fetal survival in rabbits. Magnesium Aluminum Silicate had neither a teratogenic nor adverse effects on the mouse fetus. Female rats receiving a 20% Kaolin diet exhibited maternal anemia but no significant reduction in birth weight of the pups was recorded. Type A Zeolite produced no adverse effects on the dam, embryo, or fetus in either rats or rabbits at any dose level. Clinoptilolite had no effect on female rat reproductive performance. These ingredients were not genotoxic in the Ames bacterial test system. In primary hepatocyte cultures, the addition of Attapulgite had no significant unscheduled DNA synthesis. Attapulgite did cause significant increases in unscheduled DNA synthesis in rat pleural mesothelial cells, but no significant increase in sister chromosome exchanges were seen. Zeolite particles (<10 μm) produced statistically significant increase in the percentage of aberrant metaphases in human peripheral blood lymphocytes and cells collected by peritoneal lavage from exposed mice. Topical application of Magnesium Aluminum Silicate to human skin daily for 1 week produced no adverse effects. Occupational exposure to mineral dusts has been studied extensively. Fibrosis and pneumoconiosis have been documented in workers involved in the mining and processing of Aluminum Silicate, Calcium Silicate, Zirconium Silicate, Fuller's Earth, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite. The Cosmetic Ingredient Review (CIR) Expert Panel concluded that the extensive pulmonary damage in humans was the result of direct occupational inhalation of the dusts and noted that lesions seen in animals were affected by particle size, fiber length, and concentration. The Panel considers that most of the formulations are not respirable and of the preparations that are respirable, the concentration of the ingredient is very low. Even so, the Panel considered that any spray containing these solids should be formulated to minimize their inhalation. With this admonition to the cosmetics industry, the CIR Expert Panel concluded that these ingredients are safe as currently used in cosmetic formulations. The Panel did note that the cosmetic ingredient, Talc, is a hydrated magnesium silicate. Because it has a unique crystalline structure that differs from ingredients addressed in this safety assessment, Talc is not included in this report.

2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


2011 ◽  
Vol 407 (1-2) ◽  
pp. 132-141 ◽  
Author(s):  
Wanwisa Khunawattanakul ◽  
Satit Puttipipatkhachorn ◽  
Thomas Rades ◽  
Thaned Pongjanyakul

2020 ◽  
Vol 189 ◽  
pp. 105558
Author(s):  
Tengda Wang ◽  
Lili Yang ◽  
Guancheng Jiang ◽  
Paul F. Luckham ◽  
Xiao Yang

Author(s):  
Yinghua Wang ◽  
Zhuang Ma ◽  
Ling Liu ◽  
Yanbo Liu

AbstractDuring flight, many silicates (sand, dust, debris, fly ash, etc.) are ingested by an engine. They melt at high operating temperatures on the surface of thermal barrier coatings (TBCs) to form calcium-magnesium-aluminum-silicate (CMAS) amorphous settling. CMAS corrodes TBCs and causes many problems, such as composition segregation, degradation, cracking, and disbanding. As a new generation of TBC candidate materials, rare-earth zirconates (such as Sm2Zr2O7) have good CMAS resistance properties. The reaction products of Sm2Zr2O7 and CMAS and their subsequent changes were studied by the reaction of Sm2Zr2O7 and excess CMAS at 1350 °C. After 1 h of reaction, Sm2Zr2O7 powders were not completely corroded. The reaction products were Sm-apatite and c-ZrO2 solid solution. After 4 h of reaction, all Sm2Zr2O7 powders were completely corroded. After 24 h of reaction, Sm-apatite disappeared, and the c-ZrO2 solid solution remained.


Author(s):  
Moumita Hazra

Background: Topical adapalene and tretinoin, are comedolytic, anti-comedogenic and anti-inflammatory, on RAR (α, β, γ) receptors binding. Adapalene enables quicker follicular penetration, by lesser anti-AP-1 (c-Jun, c-Fos) and no CRBPII mRNA actions, causing chemical stability, lipophilicity and less photo-lability, producing lesser photosensitivity and no skin irritation, unlike tretinoin; wherein reducible by overnight application and combination therapy, slow-release polymers or emollients, respectively. Topical nadifloxacin is bactericidal, anti-inflammatory and comedolytic, with inhibitory effect on DNA gyrase, DNA topoisomerase IV and IL-1α, IL-6, IL-8. The Global Alliance to Improve Outcomes in Acne Guidelines recommend synergistic and additive combination therapies, which enhance therapeutic efficacy and reduce adverse effects. Due to inadequacy of data, this study was conducted, to compare the safety among topical anti-acne monotherapies and combination therapies, and to easily detect any adverse effect producing component in the topical combination therapy.Methods: In this multi-centre, prospective, randomised, open-labelled, comparative study, groups A, B, C, D and E (20 patients each), applied topical 1% nadifloxacin monotherapy, 0.1% adapalene monotherapy, 0.025% tretinoin monotherapy, 1% nadifloxacin and 0.1% adapalene combination therapy and 1% nadifloxacin and 0.025% tretinoin combination therapy, respectively, over their facial mild to moderate acne lesions, once daily overnight; and adverse effects, like erythema, scaling, dryness, prutitus, burning, or stinging, were assessed on 0, 15, 30, 60, 90 days and follow-ups, by Local Irritation Scale.Results: In all 5 groups, no adverse effects were observed, with no statistically significant difference among the observations.Conclusions: The therapies were well tolerated and safe among all 5 groups.


1997 ◽  
Vol 31 (12) ◽  
pp. 1460-1464 ◽  
Author(s):  
Daniel P Healy ◽  
Richard J Dansereau ◽  
Alisha B Dunn ◽  
Chris E Clendening ◽  
Anthony W Mounts ◽  
...  

RATIONALE: Bismuth subsalicylate, tetracycline hydrochloride, and metronidazole are widely used in combination for the treatment of Helicobacter pylori infections. As a result, there is renewed interest in the interaction between tetracycline and bismuth subsalicylate. OBJECTIVE: To determine whether the observed decrease in tetracycline bioavailability is due to the active drug bismuth subsalicylate via complexation, or to magnesium aluminum silicate (Veegum), an inactive excipient present only in the liquid formulation of bismuth subsalicylate, which might adsorb the tetracycline, rendering it unavailable for systemic absorption. METHODS: Eleven healthy volunteers participated in a randomized three-period, three-treatment complete crossover study with a 7-day washout interval between treatments. After an overnight fast, subjects received a 500-mg capsule of tetracycline hydrochloride with either tap water, 30 mL of bismuth subsalicylate (525 mg) liquid containing Veegum (Pepto-Bismol), or 30 mL of a specially formulated bismuth subsalicylate (525 mg) liquid without Veegum. Blood was collected for 24 hours after each dose of tetracycline. Serum was assayed for tetracycline concentration by HPLC. In addition, standard in vitro ultraviolet spectrophotometric methods were used to determine the capacity for complexation of bismuth with tetracycline and for adsorption of tetracycline to Veegum. RESULTS: Compared with the reference treatment of tetracycline hydrochloride with water, the liquid formulation of bismuth subsalicylate containing Veegum decreased the maximum serum concentration (Cmax) of tetracycline by 21% and the serum tetracycline AUC by 27% (p < 0.001). The bismuth subsalicylate formulation without Veegum resulted in decreases in Cmax and AUC of 11% and 13%, respectively (p > 0.05 vs. tetracycline hydrochloride with water). Multiple linear regression analysis of the spectral absorbance data demonstrated a calculated recovery of tetracycline of 100.9% and, therefore, a lack of in vitro complexation with bismuth. At pH 1.2, the amount of tetracycline adsorbed to Veegum ranged from 91.5% to 97.2% over the concentration range of 0.25 to 2 mg/mL. At pH 7.0, the values ranged from 82.9% to 83.9% over the concentration range of 0.25 to 1 mg/mL. CONCLUSIONS: In vitro and in vivo data from this study indicate that Veegum, a suspending agent, and not the active agent bismuth subsalicylate, is the primary ingredient in liquid formulations of bismuth subsalicylate responsible for a decrease in tetracycline bioavailability. In addition, the mechanism of interaction is not likely due to complexation between tetracycline and bismuth subsalicylate, as previously postulated, but rather is caused by adsorption of tetracycline to the excipient Veegum, which is present only in the liquid formulation of bismuth subsalicylate. The clinical relevance of this interaction has not been determined.


2017 ◽  
Vol 6 (2) ◽  
pp. 27-32
Author(s):  
R Shrestha ◽  
J Shakya

Cosmetics are substances used to enhance the appearance or odour of the human body. The age that females begin wearing makeup gets younger and younger with every new generation. A descriptive study design was used to find out knowledge regarding adverse effects of selected cosmetic products among higher secondary level girl students. A total 70 female students of Maiya Devi Girls’ College, Bharatpur-10, Chitwan, 34 students of grade 11 and 36 students of grade 12 were selected by using probability simple random sampling lottery method. The result revealed that out of 70 respondents, 30% were of age 17 years, 51.4% were studying in grade 12. 34.3% respondents’ had experienced adverse effects from using cosmetic products, 50% had experienced acne, almost all respondent’s 98.6% got information of cosmetic products from television. Majority 82.9% of the respondents answered that cosmetic products are the substance use to enhance the appearance of body. Cent percent respondents’ had knowledge that lipstick cause lip cancer, 88.6% had knowledge that kajal cause dry eye syndrome, 97.1% had knowledge that skin lightening cream and sunscreen cause skin cancer and perfumes cause skin irritation, 87.1% had knowledge that mascara cause eye irritation, and 98.6% had knowledge that nail polish cause cancer and reading expiry and manufacture date can prevent the occurrence of adverse effects. Majority 72.9% of respondents had average level of knowledge, 17.1% had low level of knowledge and 10.0% had high level of knowledge. Statistically there was significant association between level of knowledge of the respondents’ regarding adverse effects of selected cosmetic products and grade of respondents (p = 0.044). 


Sign in / Sign up

Export Citation Format

Share Document