Drug Design Structural Alert

2011 ◽  
Vol 30 (5) ◽  
pp. 546-550 ◽  
Author(s):  
Martin E. Dowty ◽  
George Hu ◽  
Fengmei Hua ◽  
F. Barclay Shilliday ◽  
Heather V. Dowty

In the process of drug design, it is important to consider potential structural alerts that may lead to toxicosis. This work illustrates how using trifluoroethane as a part of a novel chemical entity led to cytochrome P450 – mediated N-dealkylation and the formation of trifluoroacetaldehyde, a known testicular toxicant, in exploratory safety studies in rats. Testicular toxicosis was noted microscopically in a dose-dependent manner as measured by testicular spermatocytic degeneration and necrosis and excessive intratubular cellular debris in the epididymis. This apparent toxic effect correlated well with the dose-dependent formation of trifluoroacetaldehyde, identified from in vitro rat liver microsome metabolism studies. A similar safety study performed with an N-tetrazole substitution in place of the N-trifluoroethane showed no evidence of testicular injury, implicating further the role of trifluoroacetaldehyde in the testicular lesion observed. These results highlight the relevance of early metabolic and safety testing in assessing potential structural alerts in drug design.

2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


Author(s):  
Hongfang Wang ◽  
Jinlian Fu ◽  
Aiguo Wang

Obesity has become a global health problem. Research suggests that leptin, a hormone that responds to fat deposition, may be involved in mammalian reproduction; however, its precise role in embryo implantation is poorly understood. Here, primary porcine endometrium epithelium cells (PEECs) were cultured in vitro and used to evaluate the regulatory role of different leptin levels on β3-integrin, MMP9, HB-EGF, and IL-1β, which are, respectively, involved in four critical steps of embryo implantation. Results showed that only 0.01 nM leptin significantly improved β3-integrin mRNA expression (p < 0.05). MMP9 and HB-EGF mRNA expressions were upregulated by 0.10–10.00 nM leptin (p < 0.05). The IL-1β expression level was only increased by 10.00 nM leptin (p < 0.05). β3-integrin, MMP9, HB-EGF, and IL-1β mRNA and protein have a similar fluctuant response to increased leptin. Leptin’s influence on β3-integrin, MMP9, HB-EGF, and IL-1β disappeared when the JAK2, PI(3)K, or MAPK signaling pathways were blocked, respectively. In conclusion, leptin affected porcine implantation by regulating the expression of β3-integrin, MMP9, HB-EGF, and IL-1β in a dose-dependent manner. The signaling pathways of JAK2, PI(3)K, and MAPK may participate in this regulatory process. These findings will contribute to further understanding the mechanisms of reproductive disorders in obesity.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
António Galvão ◽  
Angela Tramontano ◽  
Maria Rosa Rebordão ◽  
Ana Amaral ◽  
Pedro Pinto Bravo ◽  
...  

Metabolic hormones have been associated with reproductive function modulation. Thus, the aim of this study was: (i) to characterize the immunolocalization, mRNA and protein levels of leptin (LEP), Ghrelin (GHR) and respective receptors LEPR and Ghr-R1A, throughout luteal phase; and (ii) to evaluate the role of LEP and GHR on progesterone (P4), prostaglandin (PG) E2and PGF2α, nitric oxide (nitrite), tumor necrosis factor-α(TNF); macrophage migration inhibitory factor (MIF) secretion, and on angiogenic activity (BAEC proliferation), in equine corpus luteum (CL) from early and mid-luteal stages. LEPR expression was decreased in late CL, while GHR/Ghr-R1A system was increased in the same stage. Regarding secretory activity, GHR decreased P4in early CL, but increased PGF2α, nitrite and TNF in mid CL. Conversely, LEP increased P4, PGE2, angiogenic activity, MIF, TNF and nitrite during early CL, in a dose-dependent manner. Thein vitroeffect of LEP on secretory activity was reverted by GHR, when both factors acted together. The present results evidence the presence of LEP and GHR systems in the equine CL. Moreover, we suggest that LEP and GHR play opposing roles in equine CL regulation, with LEP supporting luteal establishment and GHR promoting luteal regression. Finally, a dose-dependent luteotrophic effect of LEP was demonstrated.


2020 ◽  
Author(s):  
Sophie H. L. Austin ◽  
Lachlan Harris ◽  
Oana Paun ◽  
Piero Rigo ◽  
François Guillemot ◽  
...  

AbstractAdult mouse hippocampal neural stem cells (NSCs) generate new neurons that integrate into existing hippocampal networks and modulate mood and memory. These NSCs are largely quiescent and are stimulated by niche signals to activate and produce neurons. Wnt/β-catenin signalling acts at different steps along the hippocampal neurogenic lineage and has been shown to promote the proliferation of intermediate progenitor cells. However, whether it has a direct role in the regulation of NSCs still remains unclear. Here we used Wnt/β-catenin reporters and transcriptomic data from in vivo and in vitro models to show that both active and quiescent adult NSCs respond to Wnt/β-catenin signalling. Wnt/β-catenin stimulation instructed neuronal differentiation of active NSCs and promoted the activation or differentiation of quiescent NSCs in a dose-dependent manner. However, we found that inhibiting NSCs response to Wnt, by conditionally deleting β-catenin, did not affect their activation or maintenance of their stem cell characteristics. Together, our results indicate that whilst NSCs do respond to Wnt/β-catenin stimulation in a dose-dependent and state-specific manner, Wnt/β-catenin signalling is not cell-autonomously required to maintain NSC homeostasis, which could reconcile some of the contradictions in the literature as to the role of Wnt/β-catenin signalling in adult hippocampal NSCs.


2002 ◽  
Vol 22 (7) ◽  
pp. 2398-2409 ◽  
Author(s):  
Suparna Mazumder ◽  
Bendi Gong ◽  
Quan Chen ◽  
Judith A. Drazba ◽  
Jeffrey C. Buchsbaum ◽  
...  

ABSTRACT Cyclin E/Cdk2 is a critical regulator of cell cycle progression from G1 to S in mammalian cells and has an established role in oncogenesis. Here we examined the role of deregulated cyclin E expression in apoptosis. The levels of p50-cyclin E initially increased, and this was followed by a decrease starting at 8 h after treatment with genotoxic stress agents, such as ionizing radiation. This pattern was mirrored by the cyclin E-Cdk2-associated kinase activity and a time-dependent expression of a novel p18-cyclin E. p18-cyclin E was induced during apoptosis triggered by multiple genotoxic stress agents in all hematopoietic tumor cell lines we have examined. The p18-cyclin E expression was prevented by Bcl-2 overexpression and by the general caspase and specific caspase 3 pharmacologic inhibitors zVAD-fluoromethyl ketone (zVAD-fmk) and N-acetyl-Asp-Glu-Val-Asp-aldehyde (DEVD-CHO), indicating that it was linked to apoptosis. A p18-cyclin E276-395 (where cyclin E276-395 is the cyclin E fragment containing residues 276 to 395) was reconstituted in vitro, with mutagenesis experiments, indicating that the caspase-dependent cleavage was at amino acid residues 272 to 275. Immunoprecipitation analyses of the ectopically expressed cyclin E1-275, cyclin E276-395 deletion mutants, and native p50-cyclin E demonstrated that caspase-mediated cyclin E cleavage eliminated interaction with Cdk2 and therefore inactivated the associated kinase activity. Overexpression of cyclin E276-395, but not of several other cyclin E mutants, specifically induced phosphatidylserine exposure and caspase activation in a dose-dependent manner, which were inhibited in Bcl-2-overexpressing cells or in the presence of zVAD-fmk. Apoptosis and generation of p18-cyclin E were significantly inhibited by overexpressing the cleavage-resistant cyclin E mutant, indicating a functional role for caspase-dependent proteolysis of cyclin E for apoptosis of hematopoietic tumor cells.


Blood ◽  
1986 ◽  
Vol 67 (6) ◽  
pp. 1675-1679 ◽  
Author(s):  
DS Snyder ◽  
JF Desforges

Abstract Lipoxygenase (LPO) metabolites of arachidonic acid participate in the activation and/or proliferation of a variety of cell types. In this study, we examined the role of LPO metabolites in controlling myelopoiesis and erythropoiesis in vitro. Monocyte depleted cells (MDC) prepared from human whole blood or whole mononuclear cells from human bone marrow were cultured in methylcellulose in the presence of various growth factors. Conditioned media containing human colony stimulating factors (CSF) or the tumor-promoting phorbol ester, phorbol myristate acetate (PMA), were added to induce myelopoiesis. Semipurified human erythropoietin (EPO) was added along with an endogenous source of burst- promoting activity (BPA) to induce erythropoiesis. The LPO inhibitor BW755C blocked all types of colony formation in a dose-dependent manner, with ID50 of 20 and 5 micrograms/mL for myeloid and erythroid colonies, respectively. MDC depleted of T cells were similarly inhibited by BW755C. Similar results were seen with two other LPO inhibitors, 1-phenyl-3-pyrazolidone and butylated hydroxyanisole. A fourth LPO inhibitor, nordihydroguaiaretic acid, inhibited at higher concentrations. Indomethacin, at concentrations that inhibit cyclooxygenase, had no significant effect, either alone or in combination with the LPO inhibitors. These results suggest that certain LPO products may be important mediators of both CSF- and PMA-induced myelopoiesis, and of BPA/EPO-induced erythropoiesis.


1985 ◽  
Vol 225 (1) ◽  
pp. 255-258 ◽  
Author(s):  
M S López de Haro ◽  
A Nieto

In 27-day-old rabbit foetal lung explants cultured in vitro, the synthesis of the protein uteroglobin decreased progressively during several days of culture. Addition of glucocorticoids to the medium progressively induced the synthesis of uteroglobin in a dose-dependent manner without affecting the synthesis of total proteins. The glucocorticoid-mediated induction of uteroglobin appears mainly due to increased amounts of uteroglobin mRNA and seems to be independent of simultaneous cell proliferation, suggesting a glucocorticoid-triggered differentiation of pre-existing cells. The results suggest a major role of glucocorticoids in the developmental regulation of the uteroglobin gene in the lung.


2000 ◽  
Vol 348 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Arun BANDYOPADHYAY ◽  
Dong-Wook SHIN ◽  
Do Han KIM

Experiments were conducted to examine the role of calcineurin in regulating Ca2+ fluxes in mammalian cells. In COS-7 cells, increasing concentrations (1-10 μM) of ATP triggered intracellular Ca2+ release in a dose-dependent manner. Treatment of the cells with calcineurin inhibitors such as cyclosporin A (CsA), deltamethrin and FK506 resulted in an enhancement of ATP-induced intracellular Ca2+ release. Measurement of calcineurin-specific phosphatase activity in vitro demonstrated a high level of endogenous calcineurin activities in COS-7 cells, which was effectively inhibited by the addition of deltamethrin or CsA. The expression of constitutively active calcineurin (CnA∆CaMAI) inhibited the ATP-induced increase in intracellular Ca2+ concentration ([Ca2+]i), in both the presence and the absence of extracellular Ca2+. These results suggest that the constitutively active calcineurin prevented Ca2+ release from the intracellular stores. In the calcineurin-transfected cells, treatment with CsA restored the calcineurin-mediated inhibition of intracellular Ca2+ release. Protein kinase C-mediated phosphorylation of Ins(1,4,5)P3 receptor [Ins(1,4,5)P3R] was partly inhibited by the extracts prepared from the vector-transfected cells and completely inhibited by those from cells co-transfected with CnA∆CaMAI and calcineurin B. On the addition of 10 μM CsA, the inhibited phosphorylation of Ins(1,4,5)P3R was restored in both the vector-transfected cells and the calcineurin-transfected cells. These results show direct evidence that Ca2+ release through Ins(1,4,5)P3R in COS-7 cells is regulated by calcineurin-mediated dephosphorylation.


2000 ◽  
Vol 20 (18) ◽  
pp. 6923-6934 ◽  
Author(s):  
Mehdi Kabani ◽  
Jean-Marie Beckerich ◽  
Claude Gaillardin

ABSTRACT We previously characterized the SLS1 gene in the yeastYarrowia lipolytica and showed that it interacts physically with YlKar2p to promote translocation across the endoplasmic-reticulum membrane (A. Boisramé, M. Kabani, J. M. Beckerich, E. Hartmann, and C. Gaillardin, J. Biol. Chem. 273:30903–30908, 1998). A Y. lipolytica Kar2p mutant was isolated that restored interaction with an Sls1p mutant, suggesting that the interaction with Sls1p could be nucleotide and/or conformation dependent. This result was used as a working hypothesis for more accurate investigations in Saccharomyces cerevisiae. We show by two-hybrid an in vitro assays that the S. cerevisiae homologue of Sls1p interacts with ScKar2p. Using dominant lethal mutants of ScKar2p, we were able to show that ScSls1p preferentially interacts with the ADP-bound conformation of the molecular chaperone. Synthetic lethality was observed between ΔScsls1 and translocation-deficientkar2 or sec63-1 mutants, providing in vivo evidence for a role of ScSls1p in protein translocation. Synthetic lethality was also observed with ER-associated degradation and folding-deficient kar2 mutants, strongly suggesting that Sls1p functions are not restricted to the translocation process. We show that Sls1p stimulates in a dose-dependent manner the binding ofScKar2p on the lumenal J domain of Sec63p fused to glutathione S-transferase. Moreover, Sls1p is shown to promote the Sec63p-mediated activation of Kar2p's ATPase activity. Our data strongly suggest that Sls1p could be the first GrpE-like protein described in the endoplasmic reticulum.


Author(s):  
Mudita Mishra ◽  
Pankaj K. Sonar ◽  
Avinash C. Tripathi ◽  
Shailendra K. Saraf ◽  
Santosh Kumar Verma

The behavioral and biochemical antiparkinson effect of 7-hydroxyflavone (7-HF) was evaluated by using virtual screening with an e-pharmacophore and shape-based screening approach, and the compound was screened by using the Sigma Aldrich compound library. Screened hits were filtered based on Lipinski’s rule, absorption, distribution,metabolism,elimination, (software for evaluation) (ADME), and toxicity parameters. The best scoring hit, 7-hydroxy 2 phenyl-4H-chromen-4-one, i.e., 7-HF was selected based on shape similarity (> 0.7), g-score, and conserved interactions. Toxicity assessment of retrieved hits was carried out by Osiris and Lazar programs. This study aims to obtain some potential hits, against various antiparkinson category from reported literature and available online resources, and validate their potency by in vivo, in vitro methods. Reserpine 5 mg/kg produces Parkinson’s like condition by depleting presynaptic catecholamines, particularly dopamine through the process of degranulation of storage vesicles. 7-HF 25, 50, and 100 mg/kg was used as a test compound. Syndopa 275 mg/kg was used as a standard drug. The results demonstrate that treatment with 7-HF improved the total locomotor activity and muscular coordination in the rotarod test. In the open field test, enhanced rearing, grooming duration of mobility, and gripping strength in the chimney test, while a decrease in cataleptic scores in the bar test. 7-HF significantly increases catalase, superoxide dismutase, and reduces glutathione level, while reduced the Malondialdehyde (MDA) level. The total protein concentration was also increased in 7-HF treated groups. The behavioral and biochemical results obtained from this study disclosed a definite neuroprotective role of 7-HF in a dose-dependent manner. It is also clear that 7-HF showed potent and effective antiparkinson activity in a similar way as standard. Interestingly, in behavioral and biochemical studies, 7-HF showed approximately equivalent effects as compared to syndopa.


Sign in / Sign up

Export Citation Format

Share Document