adult nscs
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 14)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Takashi Kaise ◽  
Masahiro Fukui ◽  
Risa Sueda ◽  
Wenhui Piao ◽  
Mayumi Yamada ◽  
...  

The regenerative potential of neural stem cells (NSCs) declines during aging, leading to cognitive dysfunctions. This decline involves up-regulation of senescence-associated genes, but inactivation of such genes failed to reverse aging of hippocampal NSCs. Because many genes are up-regulated or down-regulated during aging, manipulation of single genes would be insufficient to reverse aging. Here we searched for a gene combination that can rejuvenate NSCs in the aged mouse brain from nuclear factors differentially expressed between embryonic and adult NSCs and their modulators. We found that a combination of inducing the zinc finger transcription factor gene Plagl2 and inhibiting Dyrk1a, a gene associated with Down syndrome (a genetic disorder known to accelerate aging), rejuvenated aged hippocampal NSCs, which already lost proliferative and neurogenic potential. Such rejuvenated NSCs proliferated and produced new neurons continuously at the level observed in juvenile hippocampi, leading to improved cognition. Epigenome, transcriptome, and live-imaging analyses indicated that this gene combination induces up-regulation of embryo-associated genes and down-regulation of age-associated genes by changing their chromatin accessibility, thereby rejuvenating aged dormant NSCs to function like juvenile active NSCs. Thus, aging of NSCs can be reversed to induce functional neurogenesis continuously, offering a way to treat age-related neurological disorders.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi1-vi1
Author(s):  
Yukiko Gotoh

Abstract Quiescent neural stem cells (NSCs) in the adult mouse brain are the source of neurogenesis that regulates innate and adaptive behaviors. Adult NSCs in the subventricular zone (SVZ) are derived from a subpopulation of embryonic neural stem-progenitor cells (NPCs) that is characterized by a slower cell cycle relative to the more abundant rapid cycling NPCs that build the brain. We have previously shown that slow cell cycle can cause the establishment of adult NSCs at the SVZ, although the underlying mechanism remains unknown. We found that Notch and an effector Hey1 form a module that is upregulated by cell cycle arrest in slowly dividing NPCs. In contrast to the oscillatory expression of the Notch effectors Hes1 and Hes5 in fast cycling progenitors, Hey1 displays a non-oscillatory stationary expression pattern and contributes to the long-term maintenance of NSCs. These findings reveal a novel division of labor in Notch effectors where cell cycle rate biases effector selection and cell fate. I will also discuss the heterogeneity of slowly dividing embryonic NPCs and the lineage relationship between adult NSCs and ependymal cells, which together form the niche for adult neurogenesis at the SVZ.


2021 ◽  
Author(s):  
Xiaoqun Wang ◽  
Wei Wang ◽  
Mengdi Wang ◽  
Meng Yang ◽  
Bo Zeng ◽  
...  

Abstract Whether adult hippocampal neurogenesis (AHN) persists in adult and aged humans remains extensive debates1-8. Here, to provide a better understanding of AHN of primates, droplet-based single nucleus RNA sequencing (snRNA-seq) is used to investigate the cellular heterogeneity and molecular characteristics of the hippocampi in macaques across the lifespan and in aged humans. We pinpoint the dynamics of the neurogenic lineage, including adult neural stem cells (NSCs) and immature neurons, and the diversity of astrocytes and microglia. In the neurogenic lineage, the regulatory continuum from adult NSCs to immature and mature granule cells is investigated. We identify ETNPPL as a primate-specific NSC marker and verify STMN1 and STMN2 as immature neuron markers in primates. Importantly, we also illustrate a cluster of active astrocytes and microglia exhibiting proinflammatory responses in aged samples. The interaction analysis implies that astrocytes are more important niche cells that provide signals inducing the proliferation, quiescence and inflammation of adult NSCs at different stages and thus are attributed to the decrease and variability of AHN in adult and elderly.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1248
Author(s):  
Yang Woo Kwon ◽  
Sungwon Bae ◽  
Yeon Suk Jo ◽  
Youngsuk Seo ◽  
Jong Hyuk Yoon

Neural stem cells (NSCs) are multipotent cells capable of self-renewal and differentiation into different nervous system cells. Mouse NSCs (mNSCs) are useful tools for studying neurogenesis and the therapeutic applications of neurodegenerative diseases in mammals. Formyl peptide receptor 2 (FPR2), expressed in the central nervous system and brain, is involved in the migration and differentiation of murine embryonic-derived NSCs. In this study, we explored the effect of FPR2 activation in adult mNSCs using the synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met-NH2 (WKYMVm), an agonist of FPR2. After isolation of NSCs from the subventricular zone of the adult mouse brain, they were cultured in two culture systems—neurospheres or adherent monolayers—to demonstrate the expression of NSC markers and phenotypes. Under different conditions, mNSCs differentiated into neurons and glial cells such as astrocytes, microglia, and oligodendrocytes. Treatment with WKYMVm stimulated the chemotactic migration of mNSCs. Moreover, WKYMVm-treated mNSCs were found to promote proliferation; this result was confirmed by the expansion of mNSCs in Matrigel and the increase in the number of Ki67-positive cells. Incubation of mNSCs with WKYMVm in a supplement-free medium enhanced the survival rate of the mNSCs. Together, these results suggest that WKYMVm-induced activation of FPR2 stimulates cellular responses in adult NSCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yujin Harada ◽  
Mayumi Yamada ◽  
Itaru Imayoshi ◽  
Ryoichiro Kageyama ◽  
Yutaka Suzuki ◽  
...  

AbstractQuiescent neural stem cells (NSCs) in the adult mouse brain are the source of neurogenesis that regulates innate and adaptive behaviors. Adult NSCs in the subventricular zone are derived from a subpopulation of embryonic neural stem-progenitor cells (NPCs) that is characterized by a slower cell cycle relative to the more abundant rapid cycling NPCs that build the brain. Yet, how slow cell cycle can cause the establishment of adult NSCs remains largely unknown. Here, we demonstrate that Notch and an effector Hey1 form a module that is upregulated by cell cycle arrest in slowly dividing NPCs. In contrast to the oscillatory expression of the Notch effectors Hes1 and Hes5 in fast cycling progenitors, Hey1 displays a non-oscillatory stationary expression pattern and contributes to the long-term maintenance of NSCs. These findings reveal a novel division of labor in Notch effectors where cell cycle rate biases effector selection and cell fate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Oyama ◽  
Akihiro Nukuda ◽  
Seiichiro Ishihara ◽  
Hisashi Haga

AbstractAstrocytes, which can be obtained from neural stem cells (NSCs) by adding serum and/or recombinant proteins in culture media or by passaging NSCs repeatedly, are expected to be applicable in regenerative medicine for the treatment of neurodegenerative diseases. However, astrocytes obtained using existing methods are costly and have poor quality. The stiffness of culture surfaces has been reported to affect astrocytic differentiation of adult NSCs. However, the influence of surface stiffness on astrocytic differentiation of embryonic NSCs has not yet been reported. In this study, we showed that astrocytic differentiation of embryonic NSCs was increased on soft surfaces (1 kPa and 12 kPa) compared with the NSCs on stiff surfaces (2.8 GPa) in serum-free condition. Furthermore, di-phosphorylated myosin regulatory light chain (PP-MRLC) was decreased in embryonic NSCs cultured on the soft surfaces than the cells on the stiff surfaces. Additionally, astrocytic differentiation of embryonic NSCs was induced by a Ras homolog associated kinase (ROCK) inhibitor, which decreased PP-MRLC in NSCs. These results suggest that decreasing the PP-MRLC of embryonic NSCs on soft surfaces or treating NSCs with a ROCK inhibitor is a good method to prepare astrocytes for application in regenerative medicine.


Development ◽  
2021 ◽  
Author(s):  
Sophie H. L. Austin ◽  
Rut Gabarró-Solanas ◽  
Piero Rigo ◽  
Oana Paun ◽  
Lachlan Harris ◽  
...  

Adult mouse hippocampal neural stem cells (NSCs) generate new neurons that integrate into existing hippocampal networks and modulate mood and memory. These NSCs are largely quiescent and are stimulated by niche signals to activate and produce neurons. Wnt/β-catenin signalling acts at different steps along the hippocampal neurogenic lineage, but whether it has a direct role in the regulation of NSCs remains unclear. Here we used Wnt/β-catenin reporters and transcriptomic data from in vivo and in vitro models to show that adult NSCs respond to Wnt/β-catenin signalling. Wnt/β-catenin stimulation instructed neuronal differentiation of NSCs in an active state and promoted the activation or differentiation of quiescent NSCs in a dose-dependent manner. However, we found that deletion of β-catenin in NSCs did not affect their activation or maintenance of their stem cell characteristics. Together, our results indicate that whilst NSCs do respond to Wnt/β-catenin stimulation in a dose-dependent and state-specific manner, Wnt/β-catenin signalling is not cell-autonomously required to maintain NSC homeostasis, which reconciles some of the contradictions in the literature as to the role of Wnt/β-catenin signalling in adult hippocampal NSCs.


2021 ◽  
Author(s):  
Sascha Dehler ◽  
Lukas PM Kremer ◽  
Santiago Cerrizuela ◽  
Thomas Stiehl ◽  
Jonas Weinmann ◽  
...  

The adult mammalian brain entails a reservoir of neural stem cells (NSCs) generating glial cells and neurons. However, NSCs become increasingly quiescent with age, which hampers their regenerative capacity. New means are therefore required to genetically modify adult NSCs for re-enabling endogenous brain repair. Recombinant adeno-associated viruses (AAVs) are ideal gene therapy vectors due to an excellent safety profile and high transduction efficiency. We thus conducted a high-throughput screening of 177 intraventricularly injected barcoded AAV variants profiled by RNA sequencing. Quantification of barcoded AAV mRNAs identified two synthetic capsids, AAV9_A2 and AAV1_P5, both of which transduce active and quiescent NSCs. Further optimization of AAV1_P5 by judicious selection of promoter and dose of injected viral genomes enabled labeling of 30-60% of the NSC compartment, which was validated by FACS analyses and single cell RNA sequencing. Importantly, transduced NSC readily produced neurons. The present study identifies AAV variants with a high regional tropism towards the v-SVZ with high efficiency in targeting adult NSCs, thereby paving the way for preclinical testing of regenerative gene therapy.


2020 ◽  
Author(s):  
Sophie H. L. Austin ◽  
Lachlan Harris ◽  
Oana Paun ◽  
Piero Rigo ◽  
François Guillemot ◽  
...  

AbstractAdult mouse hippocampal neural stem cells (NSCs) generate new neurons that integrate into existing hippocampal networks and modulate mood and memory. These NSCs are largely quiescent and are stimulated by niche signals to activate and produce neurons. Wnt/β-catenin signalling acts at different steps along the hippocampal neurogenic lineage and has been shown to promote the proliferation of intermediate progenitor cells. However, whether it has a direct role in the regulation of NSCs still remains unclear. Here we used Wnt/β-catenin reporters and transcriptomic data from in vivo and in vitro models to show that both active and quiescent adult NSCs respond to Wnt/β-catenin signalling. Wnt/β-catenin stimulation instructed neuronal differentiation of active NSCs and promoted the activation or differentiation of quiescent NSCs in a dose-dependent manner. However, we found that inhibiting NSCs response to Wnt, by conditionally deleting β-catenin, did not affect their activation or maintenance of their stem cell characteristics. Together, our results indicate that whilst NSCs do respond to Wnt/β-catenin stimulation in a dose-dependent and state-specific manner, Wnt/β-catenin signalling is not cell-autonomously required to maintain NSC homeostasis, which could reconcile some of the contradictions in the literature as to the role of Wnt/β-catenin signalling in adult hippocampal NSCs.


2020 ◽  
Author(s):  
Shravanthi Chidambaram ◽  
Deborah Rothbard ◽  
Kaivalya Deshpande ◽  
Yvelanda Cajuste ◽  
Kristin M. Snyder ◽  
...  

SummaryThe insulin receptor (IR) is an evolutionarily conserved signaling protein that regulates development and cellular metabolism. IR signaling regulates neurogenesis in Drosophila; however, a specific role for the IR in maintaining adult neural stem cells (NSCs) in mammals has not been investigated. We show that conditionally deleting the IR reduces adult NSCs of the subventricular zone by ∼70% accompanied by a corresponding increase in progenitors. IR deletion produced hyposmia due to aberrant olfactory bulb neurogenesis. Interestingly, hippocampal neurogenesis was not perturbed nor were hippocampal dependent behaviors. Highly aggressive proneural and mesenchymal glioblastomas (GBMs) had high IR/insulin-like growth factor (IGF) pathway gene expression, and isolated glioma stem cells had an aberrantly high ratio of IR:IGF1R receptors. Moreover, IR knockdown inhibited proneural and mesenchymal GBM tumorsphere growth. Altogether, these data demonstrate that the IR is essential for a subset of normal NSCs as well as for brain tumor cancer stem cell self-renewal.


Sign in / Sign up

Export Citation Format

Share Document