Safety Assessment of 1,2-Glycols as Used in Cosmetics

2012 ◽  
Vol 31 (5_suppl) ◽  
pp. 147S-168S ◽  
Author(s):  
Wilbur Johnson ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

Caprylyl glycol and related 1,2-glycols are used mostly as skin and hair conditioning agents and viscosity agents in cosmetic products, and caprylyl glycol and pentylene glycol also function as cosmetic preservatives. The Cosmetic Ingredient Review (CIR) Expert Panel noted that, while these ingredients are dermally absorbed, modeling data predicted decreased skin penetration of longer chain 1,2-glycols. Because the negative oral toxicity data on shorter chain 1,2-glycols and genotoxicity data support the safety of the 1,2-glycols reviewed in this safety assessment, the Panel concluded that these ingredients are safe in the present practices of use and concentration described in this safety assessment.

2018 ◽  
Vol 37 (2_suppl) ◽  
pp. 5S-9S
Author(s):  
Wilbur Johnson ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of polyethylene glycol (PEG)-150 pentaerythrityl tetrastearate, which functions as a viscosity-increasing agent-aqueous in cosmetic products and is being used at concentrations up to 5%. Given the chemical structure (large molecule), skin penetration is not likely. The available toxicity data and the low ingredient use concentrations suggest that systemic toxicity would not be likely even if percutaneous absorption were to occur. Additionally, the negative human repeated insult patch test data on the undiluted ingredient were deemed sufficient for evaluating skin irritation and sensitization potential. The Panel concluded that PEG-150 pentaerythrityl tetrastearate is safe in cosmetics in the present practices of use and concentration described in this safety assessment.


2018 ◽  
Vol 37 (3_suppl) ◽  
pp. 80S-89S ◽  
Author(s):  
Wilbur Johnson ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

Pentaerythrityl tetra-di -t-butyl hydroxyhydrocinnamate functions as an antioxidant in cosmetic products and is used at concentrations up to 0.8%. Given the high molecular weight of this ingredient, skin penetration is not likely. The available toxicity data, together with the low ingredient use concentrations, suggest that systemic toxicity would not be likely if percutaneous absorption were to occur. Additionally, the negative human repeated insult patch test data at a concentration of 0.5% were deemed sufficient for evaluating the skin irritation and sensitization potential of pentaerythrityl tetra-di -t-butyl hydroxyhydrocinnamate over the range of use concentrations in cosmetic products. The Cosmetic Ingredient Review Expert Panel concluded that pentaerythrityl tetra-di -t-butyl hydroxyhydrocinnamate is safe in cosmetics in the present practices of use and concentration described in this safety assessment.


2015 ◽  
Vol 34 (2_suppl) ◽  
pp. 70S-83S
Author(s):  
Wilbur Johnson ◽  
Bart Heldreth ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
...  

The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating.


2008 ◽  
Vol 27 (4_suppl) ◽  
pp. 83-106 ◽  

Polyisobutene and Hydrogenated Polyisobutene are homopolymers of isobutene. These ingredients are produced in a wide range of molecular weights. Polybutene is a chemically related cosmetic ingredient previously determined to be safe as used in cosmetic products. Polyisobutene is used in cosmetic products as a binder, film former, and nonaqueous viscosity-increasing agent. Hydrogenated Polyisobutene functions as a skin-conditioning agent—emollient and nonaqueous viscosity-increasing agent with a wide range of uses in cosmetic formulations. The estimated octanol water partition coefficient for Hydrogenated Polyisobutene and Polybutene is log Kow of 13.27 and the estimated water solubility was 5.6 × 10–3 ng/L for Hydrogenated Polyisobutene and Polybutene. Acute oral toxicity testing demonstrated no effects other than lethargy in one rat study. The oral LD50 was >5.0 g/kg in rats. No short-term or subchronic animal toxicity data were available. A 2-year chronic oral toxicity study of Polybutene revealed no gross or microscopic pathological changes, and no changes in body weights or food consumption, hematological results, urology, or tumor formation that could be correlated with Polybutene ingestion, except that in the 20,000 ppm group, three out of six males that died between weeks 17 and 24 exhibited hematuria. In a 2-year chronic oral toxicity study of Polybutene in Beagle dogs, no abnormalities in body weight, food consumption, survival, behavioral patterns, hematology, blood chemistry, urinalysis, liver function, gross and histopathologic examinations, or organ weights and ratios were reported. In a three-generation reproductive study in Charles River albino rats that ingested Polybutene, none of the animals in successive generations differed from controls with regard to weight gain, litter size, the number of stillborn, and the number of viable pups during lactation. The survival, body weights, and reactions of test animals were comparable to those of controls. Neither Polyisobutene nor Hydrogenated Polyisobutene were ocular irritants, nor were they dermal irritants or sensitizers. Polyisobutene was not comedogenic in a rabbit ear study. Polyisobutene did not induce transformation in the Syrian hamster embryo (SHE) cell transformation assay, but did enhance 3-methylcholanthrene–induced transformation of C3H/10T1/2 cells. In a carcinogenicity study in mice, Polyisobutene was not carcinogenic, nor did it promote the carcinogenicity of 7,12-dimethylbenz(α)anthracene. Clinical patch tests uncovered no evidence of dermal irritation and repeat-insult patch tests with a product containing 4% Hydrogenated Polyisobutene or 1.44% Hydrogenated Polyisobutene found no reactions greater than slight erythema. These products also were not phototoxic or photoallergenic. The product containing 4% Hydrogenated Polyisobutene was not an ocular irritant in a clinical test. The Cosmetic Ingredient Review (CIR) Expert Panel recognized that there are data gaps regarding use and concentration of these ingredients. However, the overall information available on the types of products in which these ingredients are used and at what concentrations indicate a pattern of use, which was considered by the Expert Panel in assessing safety. Although there is an absence of dermal absorption data for Polyisobutene and Hydrogenated Polyisobutene, the available octanol water partition coefficient data and the low solubility in water suggest very slow absorption, so additional data are not needed. Gastrointestinal absorption is also not a major concern due to the low solubility of these chemicals. Although one in vitro study did report that Polyisobutene did promote cellular transformation, a mouse study did not find evidence of tumor promotion. Because lifetime exposure studies using rats and dogs exposed to Polybutene failed to demonstrate any carcinogenic or tumor promotion effect, and a three-generation reproductive/developmental toxicity study produced no adverse effects, the CIR Expert Panel does not believe these large, mostly insoluble polymers present any risks in the practices of use and concentration as described in this safety assessment.


2015 ◽  
Vol 34 (1_suppl) ◽  
pp. 35S-65S ◽  
Author(s):  
Wilbur Johnson ◽  
Bart Heldreth ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
...  

The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of 16 galactomannans as used in cosmetics. These ingredients are legume polysaccharides that function mostly as hair/skin-conditioning agents and viscosity-increasing agents in cosmetic products. Their substantial molecular sizes suggest that skin penetration of these ingredients would be unlikely. The Panel concluded that these galactomannans are safe in the present practices of use and concentration described in this safety assessment.


2021 ◽  
Vol 40 (1_suppl) ◽  
pp. 20S-33S
Author(s):  
Christina L. Burnett ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Curtis D. Klaassen ◽  
Daniel C. Liebler ◽  
...  

The Expert Panel for Cosmetic Ingredient Safety (Panel) reassessed the safety of the mixture Methylchloroisothiazolinone (MCI)/Methylisothiazolinone (MI), which functions as a preservative in cosmetic products. The Panel reviewed relevant animal and human data provided in this safety assessment, and data from the previously published safety assessment of this mixture, and concluded that MCI/MI is safe in cosmetics when formulated to be nonsensitizing, based on the results of a quantitative risk assessment or similar methodology; however, at no point should concentrations exceed 7.5 ppm in leave-on products or 15 ppm in rinse-off products.


2021 ◽  
pp. 109158182110238
Author(s):  
Monice M. Fiume ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 5 acyl sarcosines and 9 sarcosinate salts as used in cosmetics; all of these ingredients are reported to function in cosmetics as hair conditioning agents and most also can function as surfactants—cleansing agents. The ingredients reviewed in this assessment are composed of an amide comprising a fatty acyl residue and sarcosine and are either free acids or simple salts thereof. The Panel relied on relevant new data, including concentration of use, and considered data from the previous Panel report, such as the reaction of sarcosine with oxidizing materials possibly resulting in nitrosation and the formation of N-nitrososarcosine. The Panel concluded that these ingredients are safe as used in cosmetics when formulated to be non-irritating, but these ingredients should not be used in cosmetic products in which N-nitroso compounds may be formed.


2021 ◽  
pp. 109158182110326
Author(s):  
Christina L. Burnett ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 47 Citrus peel-derived ingredients, which are most frequently reported to function in cosmetics as skin conditioning agents. The Panel reviewed the available data to determine the safety of these ingredients. Because final product formulations may contain multiple botanical ingredients, each containing similar constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. Industry should use good manufacturing practices to limit impurities that could be present in botanical ingredients. The Panel concluded that Citrus peel-derived ingredients are safe in the present practices of use and concentration in both rinse-off and leave-on cosmetic products when formulated to be non-sensitizing and non-irritating, provided that leave-on products do not contain more than 0.0015% (15 ppm) 5-methoxypsoralen (5-MOP).


2010 ◽  
Vol 29 (6_suppl) ◽  
pp. 244S-273S ◽  
Author(s):  
Christina L. Burnett ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

Kojic acid functions as an antioxidant in cosmetic products. Kojic acid was not a toxicant in acute, chronic, reproductive, and genotoxicity studies. While some animal data suggested tumor promotion and weak carcinogenicity, kojic acid is slowly absorbed into the circulation from human skin and likely would not reach the threshold at which these effects were seen. The available human sensitization data supported the safety of kojic acid at a use concentration of 2% in leave-on cosmetics. Kojic acid depigmented black guinea pig skin at a concentration of 4%, but this effect was not seen at 1%. The Cosmetic Ingredient Review (CIR) Expert Panel concluded that the 2 end points of concern, dermal sensitization and skin lightening, would not be seen at use concentrations below 1%; therefore, this ingredient is safe for use in cosmetic products up to that level.


2015 ◽  
Vol 34 (1_suppl) ◽  
pp. 66S-129S ◽  
Author(s):  
Monice M. Fiume ◽  
Ivan Boyer ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
...  

The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of talc for use in cosmetics. The safety of talc has been the subject of much debate through the years, partly because the relationship between talc and asbestos is commonly misunderstood. Industry specifications state that cosmetic-grade talc must contain no detectable fibrous, asbestos minerals. Therefore, the large amount of available animal and clinical data the Panel relied on in assessing the safety of talc only included those studies on talc that did not contain asbestos. The Panel concluded that talc is safe for use in cosmetics in the present practices of use and concentration (some cosmetic products are entirely composed of talc). Talc should not be applied to the skin when the epidermal barrier is missing or significantly disrupted.


Sign in / Sign up

Export Citation Format

Share Document