Interactive, Animated Visualization Environment for Three-Dimensional Fluid Flow

1993 ◽  
Vol 7 (4) ◽  
pp. 277-291
Author(s):  
K. Lowther ◽  
J.C. Salem ◽  
J.A. Sethian
Keyword(s):  
1999 ◽  
Vol 7 ◽  
pp. 408-417 ◽  
Author(s):  
J. H. Strickland ◽  
L. A. Gritzo ◽  
R. S. Baty ◽  
G. F. Homicz ◽  
S. P. Burns

Author(s):  
Mohammad Mehdi Tavakol ◽  
Mohammad Eslami

Fluid flow around single or multiple bluff bodies mounted on a surface has great significance in science and engineering. Understanding the characteristics of different vortices formed around wall-mounted bodies is quite necessary for different applications. Although the case of a single surface mounted cube has been studied extensively, only little attention has been paid to the flow around two or more rectangular blocks in array. Therefore, a CFD code is developed to calculate three dimensional steady state laminar fluid flow around two cuboids of arbitrary size and configuration mounted on a surface in free stream conditions. The employed numerical scheme is finite volume and SIMPLE algorithm is used to treat pressure and velocity coupling. Results are presented for two rectangular blocks of the different size mounted on a surface in various inline arrangements. Streamlines are plotted for blocks of different size ratio. Velocity and pressure distributions are also plotted in the wake region behind the obstacles. It is shown that how the behavior of flow field and vortical structures depend on the respective size and location of the larger block in comparison with the case of two inline wall mounted cubes of the same size.


2006 ◽  
Vol 128 (4) ◽  
pp. 745-752 ◽  
Author(s):  
C. J. Hooke ◽  
K. Y. Li

Using modern EHL programs it is relatively simple to determine the pressures and clearances in rough EHL contacts. The pressures may then be used to calculate the subsurface stresses in the two contacting components. However, the results depend on the assumptions made about the fluid’s rheology. While it is possible to measure the clearances using interferometric techniques, measurement of either the pressures or stresses is extremely difficult. However it is these, rather than the clearances, that determine the life of the contact. In previous papers the authors have described how the inverse method may be used to validate the stress predictions for contacts with transverse roughness. This type of contact has fluid flow in only one plane and it remained necessary to check the results for more general rough surfaces where the flow is three-dimensional. Accordingly, the inverse method is extended, in this paper, to a situation where out-of-plane flow is significant. The paper describes the approach and presents some preliminary results for rolling contacts.


Author(s):  
Najib Hdhiri ◽  
Brahim Ben Beya

Purpose The purpose of this study is to investigate the effects of heat generation or absorption on heat transfer and fluid flow within two- and three-dimensional enclosure for homogeneous medium filled with different metal liquid. Numerical results are presented and analyzed in terms of fluid flow, thermal field structures, as well as average Nusselt number profiles over a wide range of dimensionless quantities, Grashof number (Gr) (104 and 105), SQ (varied between −500 to 500) and Prandtl number (Pr = 0.015, 0.024 and 0.0321). The results indicate that when the conductive regime is established for a Grashof number Gr = 104, the 2D model is valid and predicts all three-dimensional results with negligible difference. This was not the case in the convective regime (Gr = 105) where the effect of the third direction becomes important, where a 2D-3D difference was seen with about 37 per cent. Also, in most cases, the authors find that the heat absorption phenomena have the opposite effect with respect to the heat generation. Design/methodology/approach Numerical results are presented and analyzed in terms of fluid flow, thermal field structures, as well as average Nusselt number profiles over a wide range of dimensionless quantities. Findings Grashof number (Gr) (104 and 105), SQ (varied between −500 to 500) and Prandtl number (Pr = 0.015, 0.024 and 0.0321). Originality/value The results indicate that when the conductive regime is established for a Grashof number Gr = 104, the 2D model is valid and predicts all three-dimensional results with negligible difference.


1985 ◽  
Vol 21 (8) ◽  
pp. 1105-1115 ◽  
Author(s):  
Jane C. S. Long ◽  
Peggy Gilmour ◽  
Paul A. Witherspoon
Keyword(s):  

2014 ◽  
Vol 111 ◽  
pp. 364-380 ◽  
Author(s):  
V.M. Ribeiro ◽  
P.M. Coelho ◽  
F.T. Pinho ◽  
M.A. Alves

Author(s):  
F. Mumic ◽  
L. Ljungkruna ◽  
B. Sunden

In this work, a numerical study has been performed to simulate the heat transfer and fluid flow in a transonic high-pressure turbine stator vane passage. Four turbulence models (the Spalart-Allmaras model, the low-Reynolds-number realizable k-ε model, the shear-stress transport (SST) k-ω model and the v2-f model) are used in order to assess the capability of the models to predict the heat transfer and pressure distributions. The simulations are performed using the FLUENT commercial software package, but also two other codes, the in-house code VolSol and the commercial code CFX are used for comparison with FLUENT results. The results of the three-dimensional simulations are compared with experimental heat transfer and aerodynamic results available for the so-called MT1 turbine stage. It is observed that the predictions of the vane pressure field agree well with experimental data, and that the pressure distribution along the profile is not strongly affected by choice of turbulence model. It is also shown that the v2-f model yields the best agreement with the measurements. None of the tested models are able to predict transition correctly.


Sign in / Sign up

Export Citation Format

Share Document