Validation of the Stress Predictions in Rolling EHL Contacts Having In-Line Roughness Using the Inverse Method

2006 ◽  
Vol 128 (4) ◽  
pp. 745-752 ◽  
Author(s):  
C. J. Hooke ◽  
K. Y. Li

Using modern EHL programs it is relatively simple to determine the pressures and clearances in rough EHL contacts. The pressures may then be used to calculate the subsurface stresses in the two contacting components. However, the results depend on the assumptions made about the fluid’s rheology. While it is possible to measure the clearances using interferometric techniques, measurement of either the pressures or stresses is extremely difficult. However it is these, rather than the clearances, that determine the life of the contact. In previous papers the authors have described how the inverse method may be used to validate the stress predictions for contacts with transverse roughness. This type of contact has fluid flow in only one plane and it remained necessary to check the results for more general rough surfaces where the flow is three-dimensional. Accordingly, the inverse method is extended, in this paper, to a situation where out-of-plane flow is significant. The paper describes the approach and presents some preliminary results for rolling contacts.

Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


1999 ◽  
Vol 7 ◽  
pp. 408-417 ◽  
Author(s):  
J. H. Strickland ◽  
L. A. Gritzo ◽  
R. S. Baty ◽  
G. F. Homicz ◽  
S. P. Burns

Author(s):  
Mohammad Mehdi Tavakol ◽  
Mohammad Eslami

Fluid flow around single or multiple bluff bodies mounted on a surface has great significance in science and engineering. Understanding the characteristics of different vortices formed around wall-mounted bodies is quite necessary for different applications. Although the case of a single surface mounted cube has been studied extensively, only little attention has been paid to the flow around two or more rectangular blocks in array. Therefore, a CFD code is developed to calculate three dimensional steady state laminar fluid flow around two cuboids of arbitrary size and configuration mounted on a surface in free stream conditions. The employed numerical scheme is finite volume and SIMPLE algorithm is used to treat pressure and velocity coupling. Results are presented for two rectangular blocks of the different size mounted on a surface in various inline arrangements. Streamlines are plotted for blocks of different size ratio. Velocity and pressure distributions are also plotted in the wake region behind the obstacles. It is shown that how the behavior of flow field and vortical structures depend on the respective size and location of the larger block in comparison with the case of two inline wall mounted cubes of the same size.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Youlong Chen ◽  
Yong Zhu ◽  
Xi Chen ◽  
Yilun Liu

In this work, the compressive buckling of a nanowire partially bonded to an elastomeric substrate is studied via finite-element method (FEM) simulations and experiments. The buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the constraint density between the nanowire and the substrate. The selection of the buckling mode depends on the ratio d/h, where d is the distance between adjacent constraint points and h is the helical buckling spacing of a perfectly bonded nanowire. For d/h > 0.5, buckling is in-plane with wavelength λ = 2d. For 0.27 < d/h < 0.5, buckling is disordered with irregular out-of-plane displacement. While, for d/h < 0.27, buckling is helical and the buckling spacing gradually approaches to the theoretical value of a perfectly bonded nanowire. Generally, the in-plane buckling induces smaller strain in the nanowire, but consumes the largest space. Whereas the helical mode induces moderate strain in the nanowire, but takes the smallest space. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and three-dimensional complex nanostructures.


2000 ◽  
Vol 123 (4) ◽  
pp. 686-698 ◽  
Author(s):  
K. Iyer ◽  
C. A. Rubin ◽  
G. T. Hahn

Primary fretting fatigue variables such as contact pressure, slip amplitude and bulk cyclic stresses, at and near the contact interface between the rivet shank and panel hole in a single rivet-row, 7075-T6 aluminum alloy lap joint are presented. Three-dimensional finite element analysis is applied to evaluate these and the effects of interference and clamping stresses on the values of the primary variables and other overall measures of fretting damage. Two rivet geometries, non-countersunk and countersunk, are considered. Comparison with previous evaluations of the fretting conditions in similar but two-dimensional connections indicates that out-of-plane movements and attending effects can have a significant impact on the fatigue life of riveted connections. Variations of the cyclic stress range and other proponents of crack initiation are found to peak at distinct locations along the hole-shank interface, making it possible to predict crack initiation locations and design for extended life.


Sign in / Sign up

Export Citation Format

Share Document