Cefazolin pharmacokinetics in cats under surgical conditions

2016 ◽  
Vol 19 (10) ◽  
pp. 992-997 ◽  
Author(s):  
Gabriela A Albarellos ◽  
Laura Montoya ◽  
Sabrina M Passini ◽  
Martín P Lupi ◽  
Paula M Lorenzini ◽  
...  

Objectives The aim of this study was to determine the plasma pharmacokinetic profile, tissue concentrations and urine elimination of cefazolin in cats under surgical conditions after a single intravenous dose of 20 mg/kg. Methods Intravenous cefazolin (20 mg/kg) was administered to nine young mixed-breed cats 30 mins before they underwent surgical procedures (ovariectomy or orchiectomy). After antibiotic administration, samples from blood, some tissues and urine were taken. Cefazolin concentrations were determined in all biological matrices and pharmacokinetic parameters were estimated. Results Initial plasma concentrations were high (Cp(0), 134.80 ± 40.54 µg/ml), with fast and moderately wide distribution (distribution half-life [t½(d)] 0.16 ± 0.15 h; volume of distribution at steady state [V(d[ss])] 0.29 ± 0.10 l/kg) and rapid elimination (body clearance [ClB], 0.21 ± 0.06 l/h/kg; elimination half-life [t½], 1.18 ± 0.27 h; mean residence time 1.42 ± 0.36 h). Thirty to 60 mins after intravenous administration, cefazolin tissue concentrations ranged from 9.24 µg/ml (subcutaneous tissue) to 26.44 µg/ml (ovary). The tissue/plasma concentration ratio ranged from 0.18 (muscle) to 0.58 (ovary). Cefazolin urine concentrations were high with 84.2% of the administered dose being eliminated in the first 6 h postadministration. Conclusions and relevance Cefazolin plasma concentrations remained above a minimum inhibitory concentration of ⩽2 µg/ml up to 4 h in all the studied cats. This suggests that a single intravenous dose of 20 mg/kg cefazolin would be adequate for perioperative prophylactic use in cats.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Sabrina Passini ◽  
Laura Montoya ◽  
Martín Lupi ◽  
Paula Lorenzini ◽  
María Fabiana Landoni ◽  
...  

Clindamycin plasma and tissue disposition in cats under surgical conditions after a single intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration at a dose rate of 10 mg/kg were studied. After intravenous, intramuscular and subcutaneous administration, peak plasma concentrations were 10.93±3.78 μg/mL (Cp(0)), 5.93±1.18 μg/mL (Cmax)) and 6.30±0.88 μg/mL (Cmax)), respectively. Eight hours after clindamycin IV, IM and SC administration plasma concentrations declined to 2.01±0.61 μg/mL, 2.96±0.43 μg/mL and 3.36±0.97 μg/mL, respectively. Sixty to 90 minutes after clindamycin administration, tissue concentrations ranged from a minimum in subcutaneous tissue of 4.90 μg/g (IV), 3.06 μg/g (IM) and, 3.13 μg/g (SC) to a maximum in uterus of 13.41 μg/g (IV), 14.07 μg/g (IM) and, 14.44 μg/g (SC). The lowest tissue/plasma concentration ratio for the three administration routes was observed in subcutaneous tissue, while the highest was observed at genital level (ovary for IV and IM and uterus for SC). Estimated efficacy predictor (AUC/MIC), considering MIC breakpoint for bacteria isolated from animals, indicates that clindamycin administered IV, IM or SC at the studied dose is appropriated for perioperative prophylactic protocols and that given with a dose interval of 12 hours would be effective for susceptible infection treatment in cats.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Gabriela A. Albarellos ◽  
Laura Montoya ◽  
Martín P. Lupi ◽  
Sabrina M. Passini ◽  
Paula Lorenzini ◽  
...  

Pharmacokinetic profile, tissue concentrations and urine elimination of cephalothin in cats under surgical conditions after a single intravenous dose (30 mg/kg) were studied. Initial plasma concentrations were high [Cp(0), 353.79±118.92 μg/mL], with fast and moderately wide distribution [T1⁄2(d) 0.14±0.10 h] [V(d(ss)) 0.19±0.03 L/kg] and rapid elimination (ClB, 0.16±0.03 L/h.kg; T1⁄2, 1.07±0.23 h; MRT, 1.16±0.21 h). Thirty to 60 minutes after intravenous administration, cephalothin tissue concentrations were in the range of 3.73 μg/g (testicle tissue) to 25.63 μg/g (uterus). Tissue/plasma concentrations rate was in a range of 0.04 (testicle) to 0.21 (uterus). Cephalothin urine elimination was 66.49% in the first 6 hours after administration. Cephalothin plasma concentrations remained above a MIC≥1 μg/mL up to 5.5 hours in all the studied cats. However, for MIC≥8 –μg/mL (MIC breakpoint) this time is reduced to 2.5 hours. This suggests that proper perioperative prophylactic use of cephalothin in cats requires a dose interval not longer than 2 hours.


1996 ◽  
Vol 40 (5) ◽  
pp. 1237-1241 ◽  
Author(s):  
T Whittem ◽  
K Parton ◽  
K Turner

The effects of poly-L-aspartic acid on the pharmacokinetics of gentamicin were examined by using a randomized crossover trial design with the dog. When analyzed according to a three-compartment open model, poly-L-aspartic acid reduced some first-order rate equation constants (A3, lambda 1, and lambda 3), the deep peripheral compartment exit microconstant (k31), the elimination rate constant (k(el)), and the area under the concentration-time curve from 0 to 480 h (AUC0-480) (0.21-, 0.60-, 0.26-, 0.27-, 0.72-, and 0.76-fold, respectively; P < 0.05) but increased the volume of distribution at steady state (Vss), the volume of distribution calculated by the area method (V(area)), the apparent volume of the peripheral compartment (Vp), and all mean time parameters. These results suggested that poly-L-aspartic acid increased the distribution of gentamicin to or binding within the deep peripheral compartment and that poly-L-aspartic acid may have delayed gentamicin transit through the peripheral tissues. In contrast, poly-L-aspartic acid did not alter pharmacokinetic parameters relevant to the central or shallow peripheral compartments to a clinically significant extent. Although gentamicin's pharmacokinetic parameters of relevance to therapeutic drug monitoring were not directly altered, this study has provided pharmacokinetic evidence that poly-L-aspartic acid alters the peripheral distribution of gentamicin. This pharmacokinetic interaction occurred after a single intravenous dose of each drug. Therefore, this interaction should be investigated further, before polyaspartic acid can be considered for use as a clinical nephroprotectant.


1994 ◽  
Vol 57 (9) ◽  
pp. 796-801 ◽  
Author(s):  
LIEVE S. G. VAN POUCKE ◽  
CARLOS H. VAN PETEGHEM

The plasma pharmacokinetics and tissue penetration of sulfathiazole (ST) and sulfamethazine (SM) after intravenous and intramuscular injection in pigs were studied. Following a single intravenous dose of 40 mg ST/kg of bodyweight or 80 mg SM/kg of bodyweight, the plasma ST and SM concentrations were best fitted to a two-compartment model. The areas under the curve were 447 ± 39 and 1485 ± 41 mg/h/L, clearances were 0.090 ± 0.007 and 0.054 ± 0.001 L/kg/h, volumes of distribution were 1.16 ± 0.16 and 0.77 ± 0.06 L/kg, half-lifes in distribution phase were l.18 ± 0.57 and 0.23 ± 0.16 h and half-lifes in eliminations phase were 9.0 ± l.6 and 9.8 ± 0.6 h. When the two compounds were administered simultaneously as a single intravenous injection, the pharmacokinetic parameters for ST were not significantly different. The values for SM show statistical differences for some important parameters: α, β and the AUC0–&gt;∞ were significantly decreased and t1/2α, Vd and CIB were significantly increased. It can be concluded that after a single intravenous injection of 40 mg/kg, sulfathiazole has a high tl/2β resulting in higher tissue concentrations. This half-life, which is higher than what is reported in the literature, is not influenced by the simultaneous presence of sulfamethazine. The tl/2β for sulfamethazine after a single intravenous injection of 80 mg/kg is comparable to the data from the literature and is not influenced by the presence of sulfathiazole. Sulfathiazole and SM were also administered simultaneously as an intramuscular injection to healthy pigs at a dosage of 40 and 80 mg/kg bodyweight. Pharmacokinetic experiments were conducted on three pigs. From this pharmacokinetic study it can be concluded that upon a single intramuscular administration of 40 mg/kg of ST and 80 mg/kg of SM the absolute bioavailability in pigs is 0.92 ± 0.04 for ST and l.01 ± 0.07 for SM. Six pigs received five intramuscular im) injections as a single dose of ST and SM every 24 h for five consecutive days for the residue study. The pigs were slaughtered at different times after the last dose was given and samples were taken from various tissues and organs. Concentrations were determined by a microbiological method and a HPTLC method. No edible tissue contained more than 100 μg/kg of the individual sulfonamides after 10 days of withdrawal. It means that adult animals which have a shorter half-life and thus lower tissue concentrations will certainly meet the economic community EC) maximum residue limits after a 10 days withdrawal period.


2000 ◽  
Vol 11 (7) ◽  
pp. 1310-1316
Author(s):  
HAROLD J. MANLEY ◽  
GEORGE R. BAILIE ◽  
REGINALD FRYE ◽  
LORRAINE D. HESS ◽  
M. DONALD MCGOLDRICK

Abstract. There is increasing use of intermittent dosing of antibiotics to treat peritoneal dialysis (PD)-related peritonitis. The disposition of intravenous cefazolin and tobramycin was studied in automated PD (APD) patients. Ten patients were recruited and received a single intravenous dose of cefazolin (15 mg/kg) and tobramycin (0.6 mg/kg). Blood and dialysate samples were collected at the beginning, middle, and end of dwells 1 to 3 (on cycler), and at the end of dwells 4 to 5 (off cycler) for a 24-h period. Baseline and 24-h urine samples were collected. Pharmacokinetic parameters were calculated using a monoexponential model. Cefazolin and tobramycin half-lives were markedly different on cycler than off cycler (cefazolin on cycler : 10.67 ± 4.66 h ; cefazolin off cycler : 23.09 ± 5.6 h ; P = 0.001 ; tobramycin on cycler : 14.27 ± 4.53 h ; tobramycin off cycler : 68.5 ± 26.47 h ; P < 0.001). Mean serum and dialysate concentrations were above minimum inhibitory concentrations of susceptible organisms throughout the 24-h period for both drugs with intravenous administration. A model was developed to examine serum and dialysate concentrations after intermittent intraperitoneal administration of 15 mg/kg cefazolin and 0.6 mg/kg tobramycin. Model-predicted intraperitoneal cefazolin provides adequate serum and dialysate concentrations for 24 h. Intermittent intraperitoneal tobramycin doses must be 1.5 mg/kg for one exchange during the first day and then given as 0.5 mg/kg thereafter. It is concluded that the current empiric dosing recommendations for PD-related peritonitis may be adequate for cefazolin (15 to 20 mg/kg) ; however, tobramycin doses must be changed to 1.5 mg/kg intraperitoneally on day 1, then to 0.5 mg/kg intraperitoneally thereafter in APD patients.


2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Rosario Russo ◽  
Angelo Mancinelli ◽  
Michele Ciccone ◽  
Fabio Terruzzi ◽  
Claudio Pisano ◽  
...  

Diosmin is a naturally occurring flavonoid present in citrus fruits and other plants belonging to the Rutaceae family. It is used for the treatment of chronic venous insufficiency (CVI) for its pheblotonic and vaso-active properties, safety and tolerability as well. The aim of the current in vivo study was to investigate the pharmacokinetic profile of a branded micronized diosmin (μSMIN Plus™) compared with plain micronized diosmin in male Sprague-Dawley rats. After oral administration by gastric gavage, blood samples were collected via jugular vein catheters at regular time intervals from baseline up to 24 hours. Plasma concentrations were assessed by LC/MS. For each animal, the following pharmacokinetic parameters were calculated using a non-compartmental analysis: maximum plasma drug concentration (Cmax), time to reach Cmax (Tmax), area under the plasma concentration-time curve (AUC0-last), elimination half-life (t1/2), and relative oral bioavailability (%F). The results of the current study clearly showed an improvement in the pharmacokinetic parameters in animals treated with μSMIN Plus™ compared with animals treated with micronized diosmin. In particular, μSMIN Plus™ showed a 4-fold increased bioavailability compared with micronized diosmin. In conclusion, the results from the current study provided a preliminary pharmacokinetic profile for μSMIN Plus™, which may represent a new tool for CVI management.


2019 ◽  
Vol 68 (08) ◽  
pp. 669-673
Author(s):  
Martin Andreas ◽  
Markus Zeitlinger ◽  
Shiva Shabanian ◽  
Wilfried Wisser ◽  
Rainer Thell ◽  
...  

Abstract Background We previously identified preparation of the internal mammary artery as a risk factor significantly impairing antibiotic tissue penetration into the presternal subcutaneous tissue. We, therefore, adapted our dosing schema regarding preoperative timing to overcome this risk factor. Methods Eight patients who underwent coronary artery bypass grafting with a left internal mammary artery and vein grafts were included in this clinical trial. Cefazolin (4 g) was administered twice (3 hours and 1 hour) prior to skin incision and once during skin closure (2 g). Antibiotic concentrations were measured with subcutaneous microdialysis probes on both sternal sides. Results were directly compared with the previously published patient cohort receiving the standard schema (4 g cefazolin prior to skin incision and 2 g during closure). Results All patients (7 male, 1 female, 69 ± 7 years, 26.3 ± 3.9 kg/m2) survived the perioperative period. Mean area under the curve on the right and left sternal side was 117.0 ± 92.5 μg/mL and 114.5 ± 83.2 μg/mL, respectively (p = 0.95). This was well above the previously measured mean peak tissue concentrations without early preoperative antibiotic administration on the side of mammary artery harvesting (52.4 ± 48.5 μg/mL vs. 13.1 ± 5.8 μg/mL; p = 0.039). The %fT > minimal inhibitory concentration (MIC) for Staphylococcus epidermidis and Staphylococcus aureus during the first 10 hours in presternal tissue was ≥ 70% but did not differ compared with standard schema. Conclusions Early, additional preoperative administration of cefazolin was able to significantly increase peak tissue concentrations during surgery compared with the standard protocol. No difference, however, could be achieved in the percentage of time during which the concentration exceeded the MIC.


2000 ◽  
Vol 44 (4) ◽  
pp. 910-915 ◽  
Author(s):  
Jehangir K. Khan ◽  
Hashem Montaseri ◽  
Marzena Poglod ◽  
Hai-Zhi Bu ◽  
Zhong Zuo ◽  
...  

ABSTRACT The pharmacokinetics and distribution in tissue of several novel triazole antifungal agents were studied in different animal species in order to select an appropriate lead compound. The purpose of the study was also to determine species differences in pharmacokinetics for SYN azoles to select the most appropriate species for secondary efficacy and toxicological evaluation of the selected compound. SYN-2836, SYN-2869, SYN-2903, and SYN-2921 were rapidly absorbed into the systemic circulation and reached maximum concentrations (C maxs) of 7.31 ± 2.53, 6.29 ± 0.85, 6.16 ± 0.39, and 3.41 ± 0.34 μg/ml, respectively, in BALB/c mice after administration of an oral dose of 50 mg/kg of body weight, with bioavailability being greater than 45% in all mice. The areas under the concentration-time curve from time zero to infinity (AUC0–∞s) after administration of a single intravenous dose of 20 mg/kg to mice varied between 25.0 and 63.6 μg · h/ml. The half-life was in the range of 4.5 to 6 h. In Sprague-Dawley rats there was no significant difference in AUC0–∞ after administration of a single intravenous dose of 20 mg/kg, but on oral administration, the bioavailability of SYN-2836 was extremely low, while that of SYN-2869 was only 14.7%. In New Zealand White rabbits the C max and the time to reach C max for SYN-2836 and SYN-2869 after administration of a single oral dose of 50 mg/kg were similar. There were significant differences in AUC0–∞ and half-life between SYN-2836 and SYN-2869. On the other hand, in beagle dogs theC max and AUC0–∞ of SYN-2836 after administration of a single oral dose of 30 mg/kg were 4.82 ± 1.54 μg/ml and 41.8 ± 15.7 μg · h/ml, respectively, which were threefold higher than those of SYN-2869. The concentrations of the SYN compounds in tissue indicated that the AUC0–∞s of SYN-2836, SYN-2869, SYN-2903, and SYN-2921 in mouse lungs were significantly different from each other. The ratios of the concentrations of the SYN azoles in lungs to those in plasma were also significantly different from those for itraconazole. Among the SYN azoles the highest concentration in the lungs was found for SYN-2869. The higher level of distribution of SYN-2869 into lung tissue was considered to contribute to the potent efficacy in respiratory tract infection models compared with the potency of itraconazole. Significant differences in the pharmacokinetics of these compounds were observed in different animal species, and selection of an animal model for further evaluation was based on results obtained from these studies.


2007 ◽  
Vol 51 (4) ◽  
pp. 1185-1190 ◽  
Author(s):  
M. C. Lecaroz ◽  
M. J. Blanco-Prieto ◽  
M. A. Campanero ◽  
H. Salman ◽  
C. Gamazo

ABSTRACT Drug delivery systems containing gentamicin were studied as a treatment against experimental brucellosis in mice. Micro- and nanoparticles prepared by using poly(d,l-lactide-coglycolide) (PLGA) 502H and microparticles made of PLGA 75:25H were successfully delivered to the liver and the spleen, the target organs for Brucella melitensis. Both polymers have the same molecular weight but have different lactic acid/glycolic acid ratios. Microparticles of PLGA 502H and 75:25H released their contents in a sustained manner, in contrast to PLGA 502H nanoparticles, which were degraded almost completely during the first week postadministration. The values of the pharmacokinetic parameters after administration of a single intravenous dose of 1.5 mg/kg of body weight of loaded gentamicin revealed higher areas under the curve (AUCs) for the liver and the spleen and increased mean retention times (MRTs) compared to those for the free drug, indicating the successful uptake by phagocytic cells in both organs and the controlled release of the antibiotic. Both gentamicin-loaded PLGA 502H and 75:25H microparticles presented similar pharmacokinetic parameter values for the liver, but those made of PLGA 75:25 H were more effective in targeting the antibiotic to the spleen (higher AUCs and MRTs). The administration of three doses of 1.5 mg/kg significantly reduced the load associated with the splenic B. melitensis infection. Thus, the formulation made with the 75:25H polymer was more effective than that made with 502H microspheres (1.45-log and 0.45-log reductions, respectively, at 3 weeks posttreatment). Therefore, both, pharmacokinetic and pharmacodynamic parameters showed the suitability of 75:25H microspheres to reduce the infection of experimentally infected mice with B. melitensis.


Author(s):  
Mats Bue ◽  
Maja B. Thomassen ◽  
Ole H. Larsen ◽  
Andrea R. Jørgensen ◽  
Maiken Stilling ◽  
...  

AbstractIntra-articular injection of vancomycin may be an important antimicrobial prophylactic supplement to systemic administration in the prevention of prosthetic joint infections. In eight female pigs, 500 mg of diluted vancomycin was given by intra-articular injection into the knee joint. Microdialysis was used for dense sampling of vancomycin concentrations over 12 hours in the synovial fluid of the knee joint, and in the adjacent femoral and tibial cancellous bone and subcutaneous tissue. Venous blood samples were obtained as reference. The mean (standard deviation [SD]) peak drug concentration of vancomycin in the synovial fluid of the knee joint was 5,277 (5,668) μg/mL. Only one pig failed to reach a peak drug concentration above 1,000 μg/mL. The concentration remained high throughout the sampling interval with a mean (SD) concentration of 337 (259) μg/mL after 690 minutes. For all extraarticular compartments, the pharmacokinetic parameters (area under the concentration time-curve, peak drug concentration, and time to peak drug concentration) were comparable. The highest extraarticular mean (SD) peak drug concentration of 4.4 (2.3) μg/mL was found in subcutaneous tissue. An intra-articular injection of 500 mg diluted vancomycin was found to provide significant prophylactic mean concentrations for at least 12 hours in the synovial fluid of the knee joint. Correspondingly, the adjacent tissue and plasma concentrations were low but remained stable, signifying low risk of systemic toxic side effects and a slow release or uptake from the synovium to the systemic circulation.


Sign in / Sign up

Export Citation Format

Share Document