scholarly journals Pharmacokinetic Profile of μSMIN Plus™, a new Micronized Diosmin Formulation, after Oral Administration in Rats

2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Rosario Russo ◽  
Angelo Mancinelli ◽  
Michele Ciccone ◽  
Fabio Terruzzi ◽  
Claudio Pisano ◽  
...  

Diosmin is a naturally occurring flavonoid present in citrus fruits and other plants belonging to the Rutaceae family. It is used for the treatment of chronic venous insufficiency (CVI) for its pheblotonic and vaso-active properties, safety and tolerability as well. The aim of the current in vivo study was to investigate the pharmacokinetic profile of a branded micronized diosmin (μSMIN Plus™) compared with plain micronized diosmin in male Sprague-Dawley rats. After oral administration by gastric gavage, blood samples were collected via jugular vein catheters at regular time intervals from baseline up to 24 hours. Plasma concentrations were assessed by LC/MS. For each animal, the following pharmacokinetic parameters were calculated using a non-compartmental analysis: maximum plasma drug concentration (Cmax), time to reach Cmax (Tmax), area under the plasma concentration-time curve (AUC0-last), elimination half-life (t1/2), and relative oral bioavailability (%F). The results of the current study clearly showed an improvement in the pharmacokinetic parameters in animals treated with μSMIN Plus™ compared with animals treated with micronized diosmin. In particular, μSMIN Plus™ showed a 4-fold increased bioavailability compared with micronized diosmin. In conclusion, the results from the current study provided a preliminary pharmacokinetic profile for μSMIN Plus™, which may represent a new tool for CVI management.

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 71 ◽  
Author(s):  
Yu-Feng Yao ◽  
Chao-Zhan Lin ◽  
Fang-Le Liu ◽  
Run-Jing Zhang ◽  
Qiu-Yu Zhang ◽  
...  

The metabolic and pharmacokinetic studies on complanatuside, a quality marker of a Chinese materia medicatonic, Semen Astragali Complanati, were carried out. The UHPLC-Q-TOF/MS (ultra-high performance liquid chromatography coupled with electrospray ionization tandem quadrupole-time-of-flight mass spectrometry) method was applied to identify the metabolites of complanatuside in rat plasma, bile, stool, and urine after oral administration at the dosage of 72 mg/kg. Up to 34 metabolites (parent, 2 metabolites of the parent drug, and 31 metabolites of the degradation products) were observed, including processes of demethylation, hydroxylation, glucuronidation, sulfonation, and dehydration. The results indicated glucuronidation and sulfonation as major metabolic pathways of complanatuside in vivo. Meanwhile, a HPLC-MS method to quantify complanatuside and its two major metabolites—rhamnocitrin 3-O-β-glc and rhamnocitrin—in rat plasma for the pharmacokinetic analysis was developed and validated. The Tmax (time to reach the maximum drug concentration) of the above three compounds were 1 h, 3 h, and 5.3 h, respectively, while the Cmax (maximum plasma concentrations)were 119.15 ng/mL, 111.64 ng/mL, and 1122.18 ng/mL, and AUC(0-t) (area under the plasma concentration-time curve) was 143.52 µg/L·h, 381.73 µg/L·h, and 6540.14 µg/L·h, accordingly. The pharmacokinetic characteristics of complanatuside and its two metabolites suggested that complanatuside rapidly metabolized in vivo, while its metabolites—rhamnocitrin—was the main existent form in rat plasma after oral administration. The results of intracorporal processes, existing forms, and pharmacokinetic characteristics of complanatuside in rats supported its low bioavailability.


2019 ◽  
Vol 15 (4) ◽  
pp. 338-345
Author(s):  
Lijun Ni ◽  
Lu Ding ◽  
Liguo Zhang ◽  
Shaorong Luan

Background: Tong-Bi-Si-Wei-Fang (TBSWF) is a candidate formula of Traditional Chinese Medicine (TCM) for treating rheumatoid bone diseases, which is composed of rhizoma corydalis alkaloids, saponins of glycyrrhiza uralensis and panax notoginseng, flavonoids of rhizoma drynariae and glycyrrhiza uralensis. </P><P> Objective: Trahydropalmatine (THP), the main active ingredient of rhizoma corydalis alkaloids, was selected to study in vivo pharmacokinetics and druggability of TBSWF. Methods: The plasma concentration-time (C-T) profiles of THP and the pharmacokinetic property parameters after oral administration of THP monomer, extract of corydalis alkaloids (ECA) and TBSWF to rats, respectively were compared by a fully-validated HPLC method. Results: Compared to the THP monomer, the THP in TBSWF is absorbed faster, resides in the plasma longer and has a similar apparent volume of distribution Vz/F (10~20 L/kg). Compared to THP monomer and THP in TBSWF, the area under the concentration-time curve AUC 0-t of THP in ECA decreases two-third; Vz/F of THP in ECA (85.02 L/kg) is significantly higher than that of THP in TBSWF(p <0.05). Unlike THP monomer and THP in ECA, double peaks are observed in the C-T profile of THP after oral administration of TBSWF. THP in TBSWF exhibits slow release to a certain degree. Conclusion: The interactions among the ingredients of TBSWF promote the adsorption and prolong the residence time of THP in vivo, and provide an explanation for the advantages of TBSWF from the point of pharmacokinetics.


2011 ◽  
Vol 56 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Paul M. Beringer ◽  
Heather Owens ◽  
Albert Nguyen ◽  
Debbie Benitez ◽  
Adupa Rao ◽  
...  

ABSTRACTCystic fibrosis (CF) is characterized by a chronic neutrophilic inflammatory response resulting in airway remodeling and progressive loss of lung function. Doxycycline is a tetracycline antibiotic that inhibits matrix metalloproteinase 9, a protease known to be associated with the severity of lung disease in CF. The pharmacokinetics of doxycycline was investigated during the course of a clinical trial to evaluate the short-term efficacy and safety in adults with CF. Plasma samples were obtained from 14 patients following a single intravenous dose and after 2 and 4 weeks of oral administration of doses ranging from 40 to 200 mg daily. The data were analyzed using noncompartmental and compartmental pharmacokinetics. The maximum concentration of drug in serum (Cmax) and area under the concentration-time curve from 0 h to infinity (AUC0-∞) values ranged from 1.0 to 3.16 mg/liter and 15.2 to 47.8 mg/liter × h, respectively, following single intravenous doses of 40 to 200 mg.Cmaxand time to maximum concentration of drug in serum (Tmax) values following multiple-dose oral administration ranged from 1.15 to 3.04 mg/liter and 1.50 to 2.33 h, respectively, on day 14 and 1.48 to 3.57 mg/liter and 1.00 to 2.17 on day 28. Predose sputum/plasma concentration ratios on days 14 and 28 ranged from 0.33 to 1.1 (mean, 0.71 ± 0.33), indicating moderate pulmonary penetration. A 2-compartment model best described the combined intravenous and oral data. Absorption was slow and delayed (absorption rate constant [Ka], 0.414 h−1; lag time, 0.484 h) but complete (bioavailability [F], 1.16). The distribution and elimination half-lives were 0.557 and 18.1 h, respectively. Based on these data, the plasma concentrations at the highest dose, 200 mg/day, are in the range reported to produce anti-inflammatory effectsin vivoand should be evaluated in clinical trials.


2009 ◽  
Vol 1 ◽  
pp. OED.S2857 ◽  
Author(s):  
Ravi S. Talluri ◽  
Ripal Gaudana ◽  
Sudharshan Hariharan ◽  
Ashim K. Mitra

Objective To delineate the plasma pharmacokinetics and determine the corneal uptake of valine based stereoisomeric dipeptide prodrugs of acyclovir (ACV) in rats. Methods Male Sprague-Dawley rats were used for the study. Pharmacokinetics of ACV, L-valine-acyclovir (LACV), L-valine-D-valine-acyclovir (LDACV) and D-valine-L-valine acyclovir (DLACV) prodrugs were delineated. These compounds were administered intravenously as a bolus via jugular vein cannula and orally by gavage. Samples were purified by protein precipitation method and analyzed by LC-MS/MS. Pertinent pharmacokinetic parameters were obtained by using WinNonlin. Corneal uptake studies of LDACV and LACV were studied following oral administration. Results Following i.v. administration, the area under the curve (AUC) in μM*min of generated ACV was in the order of LACV > LDACV > DLACV indicating their rate of metabolism. The AUC values of total drug obtained in the systemic circulation after oral administration LACV and LDACV were 1077.93 ± 236.09 and 1141.76 ± 73.67 μM*min, respectively. DLACV exhibited poor oral absorption. Cmax (μM) and AUC of the intact prodrug obtained in the systemic circulation following oral administration of LDACV were almost 4–5 times higher than LACV. Moreover, concentrations achieved in the cornea after oral administration of LDACV were almost two times of LACV. Conclusions LDACV increased both the oral bioavailability and subsequent in vivo corneal uptake of ACV Hence, LDACV can be considered as the most promising drug candidate for delivery of ACV, in treatment of both genital herpes and ocular herpes keratitis after oral administration.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Fabrizio Stocchi ◽  
Laura Vacca ◽  
Paola Grassini ◽  
Stephen Pawsey ◽  
Holly Whale ◽  
...  

Objectives.To characterize the pharmacokinetic profile of levodopa (L-dopa) and carbidopa after repeated doses of the effervescent tablet of melevodopa/carbidopa (V1512; Sirio) compared with standard-release L-dopa/carbidopa in patients with fluctuating Parkinson’s disease. Few studies assessed the pharmacokinetics of carbidopa to date.Methods.This was a single-centre, randomized, double-blind, double-dummy, two-period crossover study. Patients received V1512 (melevodopa 100 mg/carbidopa 25 mg) or L-dopa 100 mg/carbidopa 25 mg, 7 doses over 24 hours (Cohort 1), 4 doses over 12 hours (Cohort 2), or 2 doses over 12 hours in combination with entacapone 200 mg (Cohort 3). Pharmacokinetic parameters included area under the plasma-concentration time curve (AUC), maximum plasma concentration (Cmax), and time toCmax(tmax).Results.Twenty-five patients received at least one dose of study medication. L-dopa absorption tended to be quicker and pharmacokinetic parameters less variable after V1512 versus L-dopa/carbidopa, both over time and between patients. Accumulation of L-dopa in plasma was less noticeable with V1512. Carbidopa exposure and interpatient variability was lower when V1512 or L-dopa/carbidopa was given in combination with entacapone. Both treatments were well tolerated.Conclusions.V1512 provides a more reliable L-dopa pharmacokinetic profile versus standard-release L-dopa/carbidopa, with less drug accumulation and less variability. This trial is registered with ClinicalTrials.govNCT00491998.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seonghae Yoon ◽  
Seongmee Jeong ◽  
Eben Jung ◽  
Ki Soon Kim ◽  
Inseung Jeon ◽  
...  

AbstractTo investigate pharmacokinetic and pharmacodynamic differences of zolpidem between males and females and their causes, including CYP3A4 activity. A single oral dose of zolpidem (10 mg) was administered to 15 male and 15 female healthy subjects. Blood samples were collected up to 12 h post-dose to determine plasma zolpidem concentrations. Pharmacokinetic parameters were obtained using non-compartmental analysis. Digit symbol substitution test, choice reaction time, and visual analog scale of sleepiness were used to evaluate pharmacodynamics. We measured CYP3A4 activity using 4β-hydroxycholesterol, an endogenous metabolite. Mean maximum plasma concentration and area under the plasma concentration–time curve were higher for females than for males (9.9% and 32.5%, respectively); other pharmacokinetic parameters showed no significant differences. Pharmacodynamic scores for females showed delayed recovery compared with that for males. CYP3A4 activity was higher in females than in males (p = 0.030). There was no serious adverse event, and adverse event incidence was not different between the sexes. Zolpidem exposure was about 30% higher in females than in males. Delayed pharmacodynamic score recovery in females could be related to higher zolpidem concentrations. Although apparent clearance was lower in females, systemic clearance might not be the cause of the different exposures to zolpidem.


2021 ◽  
Vol 7 ◽  
Author(s):  
Salah Uddin Ahmad ◽  
Jichao Sun ◽  
Fusheng Cheng ◽  
Bing Li ◽  
Safia Arbab ◽  
...  

A comparative study on pharmacokinetics of four long-acting enrofloxacin injectable formulations was investigated in 36 healthy pigs after intramuscular injection according to the recommended single dose @ 2.5 mg/kg body weight. The drug concentrations in the plasma were computed using high-performance liquid chromatography (HPLC) with fluorescence detection. WinNonLin5.2.1 software was used to analyze the experimental data and compared it under one-way ANOVA using SPSS software with a 95% confidence interval (CI). The main pharmacokinetic parameters, that is, the maximum plasma concentrations (Cmax), the time to maximum concentration (Tmax), area under the time curve concentration (AUCall) and Terminal half-life (T1/2) were 733.84 ± 129.87, 917.00 ± 240.13, 694.84 ± 163.49, 621.98 ± 227.25 ng/ml, 2.19 ± 0.0.66, 1.50 ± 0.37, 2.89 ± 0.24, 0.34 ± 0.13 h, 7754.43 ± 2887.16, 8084.11 ± 1543.98, 7369.42 ± 2334.99, 4194.10 ± 1186.62 ng h/ml, 10.48 ± 2.72, 10.37 ± 2.38, 10.20 ± 2.81, and 10.61 ± 0.86 h for 10% enrofloxacin (Alkali), 20% enrofloxacin (Acidic), Yangkang and control drug Nuokang® respectively. There were significant differences among Cmax, Tmax, and AUCall of three formulations compare with that of the reference formulation. No significant differences were observed among the T1/2 for tested formulations compare with the reference formulation. The pharmacokinetic parameters showed that the tested formulations were somewhat better compared to the reference one. The calculated PK/PD indices were effective for bacteria such as Actinobacillus pleuropneumoniae and Pasteurella multocida with values higher than the cut-off points (Cmax/MIC90≥10–12 and AUC/MIC90 ≥ 125). However, they were not effective against bacteria like Haemophilus parasuis, Streptococcus suis, E. coli, and Bordetella bronchiseptica where lower values were obtained.


2014 ◽  
Vol 58 (12) ◽  
pp. 7041-7048 ◽  
Author(s):  
Iris Usach ◽  
Virginia Melis ◽  
Patricia Gandía ◽  
José-Esteban Peris

ABSTRACTOne of the most frequent comorbidities of HIV infection is depression, with a lifetime prevalence of 22 to 45%. Therefore, it was decided to study a potential pharmacokinetic interaction between the nonnucleoside reverse transcriptase inhibitor nevirapine (NVP) and the tricyclic antidepressant nortriptyline (NT). NVP and NT were administered to rats either orally, intraduodenally, or intravenously, and the changes in plasma levels and pharmacokinetic parameters were analyzed. Experiments with rat and human hepatic microsomes were carried out to evaluate the inhibitory effects of NT on NVP metabolism. NVP plasma concentrations were significantly higher when this drug was coadministered with NT. The maximum plasma concentrations of NVP were increased 2 to 5 times and the total plasma clearance was decreased 7-fold in the presence of NT. However, statistically significant differences in the pharmacokinetic parameters of NT in the absence and presence of NVP were not found.In vitrostudies with rat and human hepatic microsomes confirmed the inhibition of NVP hepatic metabolism by NT in a concentration-dependent way, with the inhibition being more intense in the case of rat microsomes. In conclusion, a pharmacokinetic interaction between NVP and NT was detected. This interaction was a consequence of the inhibition of hepatic metabolism of NVP by NT.In vivohuman studies are required to evaluate the effects of this interaction on the pharmacokinetics of NVP before it can be taken into account for patients receiving NVP.


2005 ◽  
Vol 49 (9) ◽  
pp. 3631-3639 ◽  
Author(s):  
Olivier Nicolas ◽  
Delphine Margout ◽  
Nicolas Taudon ◽  
Sharon Wein ◽  
Michèle Calas ◽  
...  

ABSTRACT A new approach to malarial chemotherapy based on quaternary ammonium that targets membrane biogenesis during intraerythrocytic Plasmodium falciparum development has recently been developed. To increase the bioavailability, nonionic chemically modified prodrugs were synthesized. In this paper, the pharmacological properties of a bisthiazolium salt (T3) and its bioprecursor (TE3) were studied. Their antimalarial activities were determined in vitro against the growth of P. falciparum and in vivo against the growth of P. vinckei in mice. Pharmacokinetic evaluations were performed after T3 (1.3 and 3 mg/kg of body weight administered intravenously; 6.4 mg/kg administered intraperitoneally) and TE3 (1.5 and 3 mg/kg administered intravenously; 12 mg/kg administered orally) administrations to rats. After intraperitoneal administration, very low doses offer protection in a murine model of malaria (50% efficient dose [ED50] of 0.2 to 0.25 mg/kg). After oral administration, the ED50 values were 13 and 5 mg/kg for T3 and TE3, respectively. Both compounds exerted antimalarial activity in the low nanomolar range. After TE3 administration, rapid prodrug-drug conversion occurred; the mean values of the pharmacokinetic parameters for T3 were as follows: total clearance, 1 liter/h/kg; steady-state volume of distribution, 14.8 liters/kg; and elimination half-life, 12 h. After intravenous administration, T3 plasma concentrations increased in proportion to the dose. The absolute bioavailability was 72% after intraperitoneal administration (T3); it was 15% after oral administration (TE3). T3 plasma concentrations (8 nM) 24 h following oral administration of TE3 were higher than the 50% inhibitory concentrations for the most chloroquine-resistant strains of P. falciparum (6.3 nM).


2021 ◽  
Vol 19 (suplemento) ◽  
Author(s):  
A Anadón

The aim of this study was to evaluate the pharmacokinetic behaviour and the absolute bioavailability of marbofloxacin (MFX) in adult water buffaloes and to estimate the pharmacokinetic parameters for calculating the therapeutic dose in this animal species. Six adult buffaloes (3 males and 3 females) where treated by intravenous (IV) and subcutaneous (SC) route with a 10% experimental MFX injectable formulation at the dose of 2 mg/kg. After administration blood samples were drawn at pre-established times and MFX plasma concentrations where determined by microbiologic method. The pharmacokinetic analysis was made by compartmental analysis. After IV administration MFX presented a clearance of 198.4 ± 21.0 mL.kg.h and a half-life of elimination of 7.64 ± 3.29 h. After SC administration marbofloxacin presented a half-life of elimination of 8.5 ± 2.42 h, reaching it maximum plasma concentration (1.67 ± 0.516 μg/mL) at 1.69 ± 0.231 h, with a bioavailability of 80.8 ± 11.2 %. The estimated values of clearance and bioavailability will be employed in further studies for calculating the therapeutic dose of MFX in water buffaloes.    


Sign in / Sign up

Export Citation Format

Share Document