scholarly journals Low temperature mixed-mode debond fracture and fatigue characterisation of foam core sandwich

2018 ◽  
Vol 22 (4) ◽  
pp. 1039-1054 ◽  
Author(s):  
Arash Farshidi ◽  
Christian Berggreen ◽  
Leif A Carlsson

This paper experimentally investigates the effects of low temperature on fracture toughness and fatigue debond growth rate in foam core sandwich composites. Mixed-mode bending specimens were statically and cyclically tested inside a climatic chamber at a low temperature (−20°C) and at room temperature (23°C) as a reference. Testing was conducted in mode I (opening) and mixed-mode I/II (opening-sliding) mode mixities. The fatigue tests results are presented according to the modified Paris–Erdogan relation. Results showed substantial fracture toughness reduction due to low temperature. Low temperature furthermore elevated the cyclic crack growth rate.

2021 ◽  
Vol 5 (2) ◽  
pp. 49
Author(s):  
Eldho Mathew ◽  
Sunil Chandrakant Joshi ◽  
Periyasamy Manikandan

Nowadays, laminated composites are widely used in the aerospace sector. All laminates have interply/interlaminar interfaces even if they are made using automated processes. The interfaces act as the areas of weaknesses and the potential crack initiation regions. Hence, any enhancement in the crack initiation and propagation resistance is always sought after. Usage of polymeric thin films is one of the promising and viable ways to achieve this. It is also easy to incorporate micro-thin films into any automation process. In the present study, different customized thin films that are compatible with Glass/BMI composites are fabricated. Fracture toughness tests in Mode I (opening mode), Mode II (sliding mode) and Mixed Mode I/II are conducted respectively using Double Cantilever Beam (DCB), End Notch Flexure (ENF) and Mixed Mode Bending (MMB) test specimens. This paper discusses the manufacturing of compatible micro-thin films. The various challenges faced during the manufacturing and incorporation of thin films are presented. The results of the various fracture toughness tests are examined. Mechanisms through which the different films help in resisting the crack initiation and propagation are deliberated and discussed. The incorporation of this technique in Automated Fiber Placement (AFP) is also discussed.


2011 ◽  
Vol 471-472 ◽  
pp. 880-885 ◽  
Author(s):  
M. Ziaee ◽  
Naghdali Choupani

The present research examines analytically and experimentally the mode-I and mode-II and mixed mode-Interlaminar fracture toughness of PAN based carbon/epoxy composite. A modified Arcan fixture, well-suited for the study of the behavior of used composite assemblies, was developed in order to focus on the analysis of the fracture behavior of the material. The edge effects are minimized by using an appropriate design of the substrates so that experimental results give reliable data. Also the mode-I and mode-II stress intensity factors were computed for different crack lengths and load orientation angles using finite element analysis. The numerical results show that the modified Arcan specimen is able to provide pure mode-I, pure mode-II and any mixed mode loading conditions. It is shown that the results obtained from the fracture tests are consistent very well with mixed mode fracture theories. Obtained results indicated that fracture toughness and stress intensity factor for sliding mode enhanced up when the loading angle increased. Mechanism of fracture and toughening were examined by using scanning electron microscopy.


2011 ◽  
Vol 291-294 ◽  
pp. 1039-1042
Author(s):  
Wei Xie ◽  
Shao Wei Tu ◽  
Qi Qing Huang ◽  
Ya Zhi Li

In the present work, the resistance to crack extension of 2524-T3 aluminum alloy under Mode I loading was studied by using the middle-cracked tension M (T) specimens. The curve, plane-stress fracture toughness and apparent plane-stress fracture toughness were calculated by test data. The average value of measured fracture toughness at room temperature was 161 MPam1/2. The results and conclusions can be referred in airplane skin design.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2103
Author(s):  
Christophe Floreani ◽  
Colin Robert ◽  
Parvez Alam ◽  
Peter Davies ◽  
Conchúr M. Ó. Brádaigh

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012075
Author(s):  
AA Dmitrievskiy ◽  
DG Zhigacheva ◽  
VM Vasyukov ◽  
PN Ovchinnikov

Abstract In this work, the phase composition (relative fractions of monoclinic m-ZrO2, tetragonal t-ZrO2, and cubic c-ZrO2 phases) and mechanical properties (hardness, fracture toughness, compressive strength) of alumina toughened zirconia (ATZ) ceramics, with an addition of silica were investigated. Calcium oxide was used as a stabilizer for the zirconia tetragonal phase. It was shown that CaO-ATZ+SiO2 ceramics demonstrate increased resistance to low-temperature degradation. The plasticity signs at room temperature were found due to the SiO2 addition to CaO-ATZ ceramics. A yield plateau appears in the uniaxial compression diagram at 5 mol. % SiO2 concentration. It is hypothesized that discovered plasticity is due to the increased t→m transformability.


2018 ◽  
Vol 67 ◽  
pp. 75-83 ◽  
Author(s):  
M.R.M. Aliha ◽  
E. Linul ◽  
A. Bahmani ◽  
L. Marsavina
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document